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ABSTRACT

This thesis develops a technique for formulating the full nonlinear equations of
motion for a coupled rotor-fuselage system utilizing the symbolic processing software
MAPLE®. The symbolic software is further utilized to automatically convert the
equations of motion into C, Fortran or MATLAB® source code formatted specifically for
numerical integration. The compiled source code can be accessed and numerically
integrated by the dynamic simulation software SIMULINK®. SIMULINK ®is utilized to
generate time history plots of blade and fuselage motion. These time traces can be used to
explore the effects of damping nonlinearities, structural nonlinearities, active control,
individual f)lade control, and damper failure on ground resonance. In addition, a
MATLAB® program was developed to apply the Moving Block Technique for
determining modal damping of the rotor-fuselage system from the time marching

solutions.
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L. INTRODUCTION

The motivation for this study grew from interest in smart materials and their‘
application to helicopter dynamic problems. Smart materials can be used for aeroelastic
tailoring of rotor system dynamic components and also as a mechanism for implementation
of active rotor control without adding unwanted mechanical complexities. Active control
of helicopter rotor blades has several potential benefits. Among these benefits are
reductions in vibration and acoustic signature as well as elimination of mechanical and
aeromechanical instabilities such as air and ground resonance. The idea of active control
of helicopter rotors has received much attention in recent years. One of the driving forces
behind this interest is the increased popularity of bearingless rotors, which offer the
benefits of simplistic design and maintainability, but often give rise to air and ground
mechanical stability problems. |

Tt was immediately apparent that in order to conduct an in-depth investigation into
the application of smart material technology to aeroelasticity and helicopter active control,
the ability to accurately model coupled rotor-fuselage dynamics was needed. Several
software packages such as CAMRAD® by Johnson Aeronautics, FLIGHTLAB® by
Advanced Rotorcraft Technologies Corporation, and UMARC?, developed at the
University of Maryland, offer this capability. All of these codes, while very capable, are
quite complex and require considerable experience in order for a user to become proficient
in applying them. Asa result, this study was initiated in order to develop a computational
tool for modeling and analysis of coupled rotor fuselage dynamics by utilizing readily
available and generally applicable technical and mathematical software. The scope of this

study involves utilizing the symbolic manipulation software, MAPLE ® by Waterloo




Software, and the dynamic simulation software, SIMULINK® by The Mathworks, to
model and simulate the unstable mechanical phenomenon of helicopter ground resonance.
The resulting models will be used to do parametric studies of ground resonance, including
a look at the effect of active rotor control using fuselage state feedback. In order to better
quantify the effects of parameter variations and active control schemes from simulation
data, the moving block technique was utilized for time history analysis to quantify modal
damping characteristics.

Ground resonance is a potentially destructive mechanical instability that can occur
in helicopters with fully articulated, bearingless, or hingeless main rotor designs. The
phenomenon of ground resonance is the result of a coupling between fuselage motion on
its landing gear and rotor blade lead-lag and flap motion. The equations of motion
describing the coupled rotor-fuselage system are nonlinear and generally quite complex
even for simplified models. Procedures and techniques for dealing with the various
complexities of ground resonance and other mechanical and aecromechanical phenomena
that are characteristic of helicopters have been extensively investigated over the past few
decades and an abundance of literature is available on the subject. The following section
presents a brief overview of various approaches and techniques used in modeling coupled
rotor-fuselage systems for the purpose of studying the ground resonance problem and

active rotor control.




. BACKGROUND

The following paragraphs discuss the phenomenon of grbund resonance and some
of the derivation and modeling techniques utilized through the years to manage the
formulation and analysis of the complex equations of motion.

Ground resonance has been an observed happening in rotorcraft since the first
autogyros were flown early in the 20® century. It can occur when any rotor system is
placed on a flexible support. Essentially, a perturbation of a rotor blade causes the rotor
center of gravity to shift creating an inertial load on the fuselage. The fuselage is flexibly
connected to the ground via its landing gear and will start to oscillate in response to this
inertial load. For a certain range of rotor rotational speeds, the fuselage oscillations will
cause the amplitude of the blade oscillations about their respective hinges to increase, and
this further increases the inertial forces on the fuselage. Ifleft to its own accord, this
coupling of fuselage and rotor blade motion will increase in amplitude until some nonlinear
restoring force brings the system into a limit cycle or until some part of the rotorcraft fails
[Ref. 1].

No discussion of helicopter grougd resonance would be complete without
ooﬁsideting the clasSic work bf Coleman and Feingold [Ref. 2] completed in the 1940’s.
Coleman and Feingold successfully analyzed the coupling between a rotor and fuselage
and identified the ground resonance instability as a purely self excited, elasto-mechanical
phenomenon. Their study was based on a simplified three-bladed rotor model which is the
basis for one of the models considered in this study. The model allows for hub
translational degrees of freedom in one plane and rotor blade lead-lag degrees of freedom

in the same plane (see Figure 3. 1). In deriving the equations of motion, Coleman makes




use of “Coleman” coordinates [Ref. 2] and complex variables to reduce the number of
equations that describe the system to two complex (four real). From the equations of
motion, the characteristic equation is derived by assuming a solution that has the rotor
center of mass and fuselage center of mass moving in an elliptic whirling motion. The
roots of the characteristic equation are the characteristic whirling speeds of the rotor , and
the nature of these roots indicate the nature of the system stability, i.e., whether or not the
rotor rotational speed resides in the self excited region. Coleman and Feingold ultimately
reduce the results of their study to a series of graphs which can be applied to a wide range
of rotor configurations.

Coleman and Feingold’s work became the basis for the evolution of theory and
design techniques used for dealing with ground resonance. Atthough this classic theory
offers much insight and understanding into the phenomenon, especially for conventional
articulated rotor systems, the increasing popularity of hingeless and bearingless rotor
designs in modern helicopters and the growing desire to eliminate the need for mechanical
dampers requires more sophisticated analytical techniques.

As computational power improved with the evolution of digital computers, more
general techniques for analyzing rotor system stability came into being. Peters and
Hohenemser [Ref. 3] apply Floquet analysis to the problem of lifting rotor stability.
Floquet analysis is a method which can be used to determine the stability of solutions to
systems of linear ordinary differential equations with periodic coefficients. The Floquet
transition matrix which relates the system state variables at the beginning and end of a
rotational period is computed by numerical time wise integration. The eigenvalues of the

transition matrix are a measure of system stability. Hammond [Ref. 4] applies Floquet




analysis to the prediction of mechanical instabilities, specifically examining the case of
unbalanced lead-lag damping. The unbalanced problem requires solution of the equations
of motion with the blade equations exi)ressed inthe rotating reference frame because a
transformation to the fixed system is no longer possible for a ground resonance analysis as
was possible for the isometric case. Asa result, you are left with a system of equations
with periodic coefficients which can be handled by the Floquet method.

Hingeless and bearingless rotor configurations often face the additional difficulty
of air resonance. Aerodynamics may play more than a passive roll in the ground
resonance regime in hingeless systems in contrast to articulated systems where
aerodynamics have little effect. As a result, more complex models are required to
accurately represent the physics of the helicopter aeromechanical stability problem.
Models must include blade flap and torsional degrees of freedom as well as lead-lag
degrees of freedom. Fuselage models also should include pitch and roll as well as
translational degrees of freedom. Aerodynamic models can range from quasi-steady strip
theory to unsteady aerodynamic theories which include elaborate wake models or dynamic
inflow models. Ormiston [Ref. 5] utilizes a rigid blade and rigid fuselage model with flap-
lag and pitch-roll degrees of freedom to conduct parametric investigations based on an
eigenvalue analysis. As is typical, the equations of motion were derived by a Newtonian
approach and the resulting system of nonlinear differential equations are linearized for
small perturbations. The model includes linear rotor blade and lanciing gear springs,
viscous damping, and quasi-steady aerodynamics. Freidmann and Venkatesan [Ref. 6]
and Freidmann and Warmbrodt [Ref. 7] derive the complete set of governing equations of

a helicopter rotor coupled to a rigid body fuselage. The equations account for rotor blade

U




elastic deformations and include quasi-steady aerodynamics or modified Theordorsen
unsteady aerodynamic theory. In deriving the full equations of motion, Fréidmann etal,
stress the importance of applying an ordering scheme to the process in order to handle the
complexity of the equations and enormous number of terms generated by their expansion.
The equations, as presented by Freidmann et al. [Ref. 6 and 7], are in a form which makes
them generally applicable to a wide range of rotorcraft problems.

Another interest in the study of helicopter ground resonance is the effect that
nonlinear elastic and damping forces have on stability. Tongue [Ref. 1], Tongue and
Flowers [Ref. 8 and 9], Tongue and Jankowski [Ref. 10], and Tang and Dowell [Ref. 11],
use variations of the nonlinear technique of harmonic balance using describing functions to
represent nonlinear damping. The technique is useful for investigating limit cycle
behavior of strongly nonlinear systems and its impact on system stability.

Active control of rotor systems and its application to stabilizing ground and air
resonance has been investigated by Straub [Ref 12] and Straub and Wambrodt [Ref. 13].
In both of these studies the nonlinear periodic equations of motion, derived with a2 method
similar to that of Freidmann and Venkatesan [Ref. 6], are linearized and incorporated into
a state space model in which active control inputs are input to the rotor blades from the
fixed coordinate system via a swashplate. The state space model is then used to study the
influence that state feedback gain and phase have on system damping.

Helicopter aeromechanical instabilities can be analyzed by methods ranging from
Coleman’s classic analysis to direct time integration of the equations of motion. As
engineers strive to develop rotor systems free of ground and air resonance which do not

require the addition of maintenance intensive mechanical damping systems, more




elaborate models will be needed to accurately capture all physical aspects of the problem.
To achieve the truly damperless rotor Ormiston [Ref. 14] addresses three different
approaches which may be feasible, 1) incorporating high damping material into the blade
or flexbeam structure, 2) automatic feedback control, and 3) development of aeroelastic
couplings to provide inherent stability. These three approaches have provided the impetus
behind the work which follows. The goals of the following study were to develop a
modeling technique utilizing symbolic processing to manage the complexity of deriving
and coding the coupled rotor-fuselage equations of motion, incorporate the resulting
model into a dynamic simulation environment, and have a final product which provides a

useful tool for conducting parametric studies of helicopter acromechanical behavior.







L. EQUATIONS OF MOTION

The equations of motion for a coupled rotor-fuselage system were derived using
the Lagrangian approach. This study was concerned with two models, one being
characterized as simple and the other as complex. The Lagrangian approach was selected
as opposed to the Newtonian because it is easily implemented with the aid of a symbolic
processor. For a historical note, it is interesting that Lagrange himself recognized the
suitability of his methods to routine processing. He states in his Méchanique Analytique,

The methods which I present here do not require either

constructions or reasonings of geometrical or mechanical nature, but only

algebraic operations proceeding after a regular and uniform plan. Those

who love the Analysis, will see with pleasure Mechanics made a branch of

it and will be grateful to me for having thus extended its domain.

The equations for both models considered were formulated with Lagranges method in
their full nonlinear forms, i.e., no ordering scheme, small angle assumptions, or
linearization techniques were applied during derivation and subsequent coding.

A. SIMPLIFIED MODEL DESCRIPTION

The simplified model is based on that used by Coleman [Ref. 2], and is shown
schematically in Figure 3.1. A three bladed model will be the only case considered in this
report, but all mathematical modeling methods used in this study can be easily generalized
to any number of blades. Elastic forces generated by rotor blade and flexbeam motion |
were modeled as a linear torsional spring located at the effective hinge position of the
blade. The landing gear stiffness was also modeled with linear springs. For the basic
simplified model, landing gear and lead-lag damping was modeled with linear dashpot

type dampers. Addition of nonlinear mechanical effects such as hardening and softening

springs, hydraulic damping, and lead-lag stops, will be discussed in a later section.
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Figure 3. 1 Schematic of Simplified Rotor-Fuselage System

This model allows for the following degrees of freedom:
u; = Fuselage translation in 1-direction (x-direction).
u; = Fuselage translation in 2-direction (y-direction).

& = Lead-lag angular displacement of k™ rotor blade.

A. COMPLEX MODEL DESCRIPTION
The complex model is based on that used by Straub [Ref. 12]. This model assumes
rigid blades and fuselage. The blade and flexbeam elastic forces are modeled, as in the
simplified model, as equivalent torsional springs located at effective hinge positions offset
from the rotor hub (flap and lead-lag hinges are assumed to be coincident).
This model allows for the following degrees of freedom:

u; = Fuselage translation in 1-direction (x-direction).
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u, = Fuselage translation in 2-direction (y-direction).

r, = Fuselage rotation about 1-axis (roll).
r,= Fuselage rotation about 2-axis (pitch).
&= Lead-lag angular displacement of k™ rotor blade.

By = Flap angular displacement of k® rotor blade.

C. COORDINATE SYSTEMS AND TRANSFORMATIONS

In developing the equations of motion for the two coupled rotor-fuselage models
five coordinate systems were utilized with transformations between the various systems
based on Euler angle rotations. The five coordinate systems are (1) inertial, fixed relative
to the Earth, (2) fuselage, fixed to center of gravity of fuselage, (3) hub, parallel to
fuselage system but offset a distance h in the positive z (or 3) direction, (4) undeformed
blade, fixed to the effective hinge position on the k™ blade, (5) deformed blade, fixed to
the effective hinge position on the k™ blade, but with the x-axis coincident with the blade

‘elastic’ axis. Table 3.1 summarizes the notation used for the various coordinate systems.

Table 3.1 Coordinate System Notation

Coordinate System Representative Notation for a Vector in this
System
Inertial i T
x y ]
Fusel e~ ~V
uselage %y Z]
Hub - _Y
* v 7]
Undeformed blade A oA A
% 5 2]

11




Coordinate System Representative Notation for a Vector in this
System
Deformed blade ~ ~ ¥
[z 5 2]
The following generic transformations are defined:
1 0 0
T(a)=|0 coda) sin(a) G.1)

0 -sin(a) cos(a)

(cos{a) 0 -sin(a)]
T{@)=| 0 1 0 (3.2)
| sin(l@) 0 cos(a) |

[ cosla) sin(a) O]
T,(a) =| -sin(a) cos(a) 0 (3.3)
0 0 1

Where in general, T;, T,, and T are rotations about the 1, 2, and 3 axes respectively .
This notation can be directly utilized with the symbolic processor and will be used in the
following section where the energy expressions necessary for the Lagrangian derivation
are defined. The order of fuselage rotations when using these Euler angle transformations
will be pitch - roll, and the order of rotor blade angular displacements will be flap-lag.

The following relations summarize the coordinate transformations used for the simplified
and complex models:

Simplified model:

1. Hub to Inertial:

12




x X 1 00
yi=Ily| ; I=|0 1 0| ; Systemsare parallel
z z 0 01
2. Blade undeformed to Hub:
X x
— T ~
y =[7;(% )] y
z z
3. Blade deformed to Blade undeformed:
x X
A T ~
?|=[5&)] |7
z z
Complex model:
1. Fuselage to Inertial:
x X
T o~
y =[71(71)Tz(rz)] y
z z
2. Hub to Fuselage:
X x 1 00
¥i=Ily| ; I=|0 1 0| ; Systemsare parallel.
z z 0 01

3. Blade undeformed to Hub:

i3

(.4)

G5

(3.6)

G.7

(3.8)




>

(3.9)

=[z()]

N el R
Ny S

4. Blade deformed to blade undeformed:

>
)

(3.10)

-[5)5B)]

[STRR3Y
N) @)

D. DERIVATION UTILIZING SYMBOLIC PROCESSOR

This section summarizes the development of the energy expressions necessary for
the Lagrangian derivation. Here, the equations for the complex model are developed to
illustrate how the symbolic processor was utilized.

The Langrange equation can be expressed as follows:

d(ﬁT) oT 8U 6D
= (3.11)

a\2a) 2q T oq T2, "
Where, T is the kinetic energy, U is the potential energy, D is the dissipation function, F; is
a generalized force, and g; is a generalized displacement. The generalized force term, F;,
will describe the aerodynamic forces on the individual rotor blades and will be discussed in
a later section, as a result, this derivation develops only the system of homogeneous
equations. The various energy terms can be broken down into two categories, terms due

to blade motion and terms due to fuselage motion, to give the following equations:

T=T1, +i(2;)t (3.12)

k=1
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U=U, +i(U,,)k (3.13)

k=1

D=D, +}E(U3)k (3.14)

Where the subscripts F and B indicate fuselage and rotor blade respectively.
The kinetic energy of the k™ rotor blade is given by the following expression:
1 (s =

(T3), = j;-z—m'(p-p) dr (3.15)
Where p is the position of a point on the elastic axis of the k™ rotor blade with respect to
the inertial coordinate system at any instant in time, and m’ is the mass distribution per
unit length of the blade (for this study mass distribution per unit length is assumed to be
uniform). The position of a point on the elastic axis of a rotor blade, g, is expfessed as
the sum of relative positions with respect to the various coordinate systems transformed to

the inertial system. Thus,
p= (,51.-_1 )1 + (ﬁ}]_ﬁ') . +(ﬁBu_H)I + (53«1_3::)1 "‘(ﬁp_sd) e (3.16)

where, for example, the term (ﬁBu_ P )1 is the position of the origin of the undeformed

blade coordinate system with respect to the hub coordinate system transformed into the
inertial coordinate system. The individual terms of equation (3.16), referring to equations

(3.1) through (3.3) are defined as follows:
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(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

Equations (3.22) are substituted into the equations of (3.17) through (3.21) and

the matrix multiplication is performed with the results substituted into equation (3.16).

This gives a vector expression for the position of an arbitrary point on the elastic axis of

the k™ rotor blade with respect to the inertial coordinate system at any instant in time in

terms of the system degrees of freedom. The time derivative of this expression gives the

velocity, ﬁ , which is substituted into equation (3.15) to give the kinetic energy for k*

rotor blade. All of the calculus and algebra was accomplished with MAPLE® (see

Appendix A for a look at the MAPLE® worksheet).

The elastic forces generated by rotor blade motion give rise to a potential energy

term in the Lagrange equation. Since a rigid blade model was assumed, the potential
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energy was modeled using equivalent torsional springs to restrain the rotor blade, with
spring constants selected to approximate elastic forces due to in plane and oﬁt of plane
bending of the rotor blade (and the flexbeam in the hingeless case). The potential energy

of the k™ rotor blade is
1 2, 1 2
U,), = SKob +5 KL (3.23)

An explanation of the validity of using an equivalent torsional spring system to model the
elastic forces of a deformed rotor blade is given in some detail by Venkatesan and
Friedmann [Ref. 6].

System damping is modeled in energy form by use of a dissipation function, which

for the k™ rotor blade of the complex rotor model is
1,4, 1,22
(Ds), =35GB +5C (3:29)

For the fuselage, the kinetic energy in terms of translational and rotational degrees

of freedom is
1., 1.,
(), =5 M +5 Mty (3.25)
| 1, ., 1., .
(%), = 5’ +51hs" = 2ha, (3.26)
The fuselage potential energy is
(U ) =-1-Kuz+—1-Ku2 3.27)
Floas — 9011 T 90272
1 2 1 2
w:) . =5 KRr? + KRy, (3.28)

The dissipation functions for the fuselage are
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R
(D). = S C? +5 Cyty? (3.29)

1 1
(D)., =5 CRA? +5 CR7’ (3.30)

The resulting inputs for the fuselage terms in equations (3.12) through (3.14) are

T, =(z), . +(%) (331)
U, =(U;), . +U:), (3.32)
D, =(D;)__ +(D:),, (3.33)

All of the energy expressions defined above were entered into a MAPLE®
worksheet programmed to apply equation (3.11) and generate the equations of motion
corresponding to each of the system’s degrees of freedom (see Appendix A). An
important characteristic of MAPLE® is that it allows for distinction between dependent
and independent variables via functional notation, e.g., to indicate a variable ‘X’ is a
function of time (t) simply write it as “X(t)’. It is also important to note that when
applying Lagrange’s equation in MAPLE?®, derivatives are only understood when taken
with respect to independent variables, so when taking derivatives with respect to the
degrees of freedom and the time rates of change of the degrees of freedom, the time
functional notation which represents these variables must be converted to independent

variable notation. For example, the flap angle degree of freedom, S (), and its time rate

aplt
of change , gt( ) , would have to be replaced in all of the energy expressions by the

orT
independent variables , 8 and df, respectively, in order for terms like -ﬁ—q— and
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arT
7y (where g, =B () and ¢, = ( ) 2P "7y to be evaluated properly by the MAPLE®

i

aT
symbolic engine. Additionally, for the time derivative term, :t ( 74, ) to be evaluated

properly, all degrees of freedom expressed in independent notation must be converted
back to time dependent notation. The MAPLE® code which accomplishes the above
manipulations for the complex model is contained in Appendix A.

The equations of motion generated by the MAPLE® program for the simplified
model were verified against the equations used by Flowers and Tongue [Ref. 5]. Flowers

and Tongue also utilized a Lagrangian approach and symbolic manipulation to arrive at the

following equations of motion for a model similar to the one described in Figure 3.1.

M, £+C x+V, He+ K, x=

3.34
m,R ;[‘;k sm(y’k +Ck +(Q+§k) ws('l’k +¢k)] @34
M, 5+C,y+V, W+K, y=
(3.35)
—mbRg[gk sin Wx +4k) (Q'*'gk) sm(‘/’k +;k)]
m R, +C, ;+ Kl +m,Q%eR sm({,,)
(3.36)

m,R (x sm(% + C,,) -y 005('/’;; +6} ))

Flowers and Tongue included an additional term in equations (3.34) and (3.35) involving
the product of first derivatives and their absolute values. These terms represent nonlinear
damping. Inclusion of nonlinear (hydraulic) damping in the dissipation function for input

into Lagrange’s equation will be discussed in a later section.
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Equations (3.34) through (3.35) were compared against the equations of motion
generated by the MAPLE® program for a three bladed simple rotor fuselage model and
were found to match exactly (except for the nonlinear damping terms which were not

included initially). The MAPLE® equations for this case are shown in Appendix B.
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IV. BUILDING THE SIMULATION MODEL

A. S-FUNCTIONS AND CODE GENERATION

Construction of the simulation model from the equations of motion was based on
the structure of the SIMULINK® S-function. The S-function defines the dynamics of a
model. It can be written in C or Fortran code or as a MATLAB® m-file (a mathematical
programming language with similar syntax to Fortran). The structure of the S-function is
generic so as to allow for a wide range of functionality when programming the dynamics
of various systems. SIMULINK® accesses an S-function through its numerical integration
routines. The routines make calls to the S-function for specific information, the type of
information returned is dependent on the value of a flag variable sent by the integration
routine. For example,

flag= 0  S-function returns sizes of parameters and initial conditions ,

flag=1  S-function returns state derivatives dx/dt,

flag=3  S-function returns outputs.
The section of the S-function which computes the derivatives at each time step is the
section which contains the equations of motion [Ref. 15].

As a result of the Lagrangian derivation , MAPLE® generated the equations of
motion in the following form,

FE%%1)=0 @1

where X is a vector of displacement degrees of freedom of the system. Unfortunately

this form is not very useful when it comes to programming a SIMULINK® S-function, so
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MAPLE® was further used to manipulate the equations of motion into the following

equivalent form,

[4(%,%.0))# = 7(7.5.1) “42)
where A is an NxN matrix and 7 an Nx1 vector, with N = number of degrees of freedom
of the system. This is possible since the equations are quasi-linear in the second derivative
(acceleration) terms, i.e., no terms exist of types such as ¥, or sin(¥), etc. This form
can then be transformed from N second order equations to 2N first order equations as

follows,

X=w
=47 @
These equations can be evaluated at each time step in a numerical simulation to give the
state derivatives. The primary job to be accomplished with MAPLE® was to generate the
expressions for the elements of [ 4] and f (which can be quite lengthy) from the
equations of motion. After this was accomplished, the MAPLE® code generation routine
was used to automatically generate the optimized C or Fortran code that could be placed
directly into an S-function template (See Appendix C for an example of the MAPLE®
code generation results).

For each model, MAPLE® was used to generate the Fortran code representing the
equations of motion. This code was used to create an S-function in MATLAB® m-file

format. Because Fortran and m-file syntax are so similar, only minor editing was required.

A copy of the S-function program for this case is contained in Appendix D.




B. NUMERICAL INTEGRATION ROUTINE (ODE SOLVER)

SIMULINK® provides several numerical ordinary differential equation (ode)
solvers (numerical integration algorithﬁ)s). The algorithms utilized in this stud)‘f are from
the Runge-Kutta (rk) family (k45 and rk23). Runge-Kutta algorithms generally
outperform other schemes for systems of nonlinear ordinary differential equations which
are not too stiff. The rk algorithms also handle discontinuities well [Ref. 7].

For completeness and to describe how the integration algorithms interact with
SIMULINK® S-functions, a brief description of the rk method is given. The first order
ode (the following algorithm can be easily extended to systems of first order ode’s),

% = f(.7) (4.4)

can be integrated between #, and Z,.; t0 give the following,

Hewa) =)+ [ Ft) “5)

Tn the rk method, the integral expression on the right hand side of equation (4.5)is
approximated with 2 numerical integration scheme, such as Simpson’s 1/3 rule, resulting in

the following expression for the value of y at the next time step,

h
Y1 =V +g{f (atn) 441 @ ot D+S (m,tm)} (4.6)

The parameter  is the size of the time step, and ¥ , and ¥,,, are initial estimates of y at

2
the half and full step, and are given by the following expressions derived from Taylor

expansions about y» ,




h
¥ 1 =Yat5 /1) | @7

n+
2

Vot =¥ +f{o 70.01,)+0-9) f{?ﬁl,tﬂln @8)

2

The variable @ is a weighting parameter that can be selected to optimize the accuracy of
the numerical method [Ref. 16]. In SIMULINK®, it is the values of the function f{y,?)
that are generated by the S-function when the integration routine calls with the proper
flag. Thus, SIMULINK® provides the means of modeling any dynamic system for
numerical simulation provided that the equations of motion are expressed as a system of
first order ode’s. It is important to note that the algorithm described above is only one
variant of the rk family of ode solvers and that the actual routines utilized by
SIMULINK® are somewhat more sophisticated.

Before beginning a simulation with SIMULINK®, the user sets several parameters
which control the execution of integration routine. The user must designate a maximum
and minimum (time) step size, simulation duration (start and stop time), and a tolerance
which establishes the maximum relative error. If the algorithm cannot decrease the
maximum relative error without going below the minimum step size, a warning message is

displayed.
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V. MODELING NONLINEAR EFFECTS
To include additional nonlinear terms into the overall model the equivalent energy
expression representing the effect is simply added to the overall energy expression in the
MAPLE® worksheet program. For example, to model a nonlinear flexbeam, a Duffing

spring term can be added to the equation of motion of the k™ rotor blade of the form
(x.),¢00 (5.1)

For the Lagrangian derivation, which the MAPLE?® program performs, the equivalent

potential energy term is given by
I:(Kd)kzsdz = %(Kd)k; ¢ (5-2)

This term is simply added to the expression representing the potential energy of the k™
rotor blade. To add nonlinear damping to the rotor blades or fuselage a term of the
following form is added to the respective dissipation function
v, (5.3)
where V, is the nonlinear hydraulic damping coefficient [Ref. 5].
The effect of lead-lag (flap) stops was also modeled by incorporating a simulated
jump in lead-lag (flap) stiffness by use of Heaviside step functions in the potential energy

expressions. For lead-lag stops the expression is
1 1 1
EKSH(g— 2)¢-2)° +EK,(§+ z) —-EKSH(4’+ 2)¢+2) (54)

where the Heaviside step function, H(%), is defined as

H(z) = {O’ r<9 (5.5)

1, 720
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and z is the absolute displacement angle at which a rotor blade would engage the lead-lag
(flap) stops, and X, is the effective increase in lead-lag (flap) stiffness. For programming

purposes, expression (5.4) can be written in terms of the signum( ) function as follows
1 1 1 1
szgzsigmmr({— z) +§K,§ 2_ -4-K,zzsigmlm(§+z) - -Z-K,zé’ sigmm({— z)

1 1 1
+ZK,zzsigmmn(§—z)——2-K,z§ sigmxm({—z)—zK,Cz signum({ + z) (5.6)
-1»%1(,22

where
. x
sigmum(x) = ] 6.7

Thus, any structural or damping nonlinearity can be incorporated into the model by
adding the appropriate energy expression into the MAPLE® worksheet, and then
executing the worksheet to generate the updated code for incorporation into the

SIMULINK® S-function.
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V1. SIMULATION RESULTS
This section displays results of several simulations and demonstrates the unique
capabilities and flexibility of the modeling method described in previous sections. Direct
simulation allows analysis of any number of different configurations or scenarios, such as
non-isotropic hub, one damper inoperative, or even simulated rotor blade damage.
Though the time history plots in the following subsections do not indicate it, SIMULINK®
offers the useful capability of being able to visualize the dynamics of a model as they

progress, which can add valuable insight into the phenomenon being studied.

A. SIMPLE MODEL

The following table summarizes the parameters that can be set interactively for any
simulation for the simple model. The table gives the representative nomenclature used to
represent the parameter in the MAPLE® and S-function programs. The table is

representative of a three bladed model.

Table 6.1 Simple Rotor Mode! Program Nomenclature

Parameter As it Appears in MAPLE® and/or Units
S-function code
Rotor blade mass mb(1), mb(2), mb(3) mass
Fuselage effective M(1), M(2) mass
massinx and y
direction
Distance from hinge R length
to center of mass of
blade
Rotor speed Omega rad/sec
Hinge offset el length
Angle at which lead- z radians
lag stops engage
Azimuth phase angle Phi(1), Phi(2), Phi(3) radians
of rotor blade
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Parameter As it Appears in MAPLE® and/or Units
S-function code
Lead-lag linear Czeta(1), Czeta(2), Czeta(3) moment/
damping coefficient (rad/sec)
Lead-lag nonlinear Vzeta(1), Vzeta(2), Vzeta(3) moment/
damping coefficient (rad/sec)’
Fuselage linear c(1), (2) force/
damping coefficient (length/sec)
in x and y direction
Fuselage nonlinear v(1), v(2) force/
damping coefficient (length/sec)’
in x and y direction
Lead-lag linear Ke(1), Ke(2), Ke(3) moment/rad
spring coefficient
Lead-lag nonlinear Kd(1), Kd(2), Kd(3) moment/rad’
spring coefficient
(Duffing spring)
Lead-lag stop spring Ks(1), Ks(2), Ks(3) moment/rad
coefficient
Effective fuselage K(1), K(2) force/length
stiffness in x and y
direction
Fuselage states xXi, xYi length
initial displacement
conditions :
Fuselage states xrXi, xrYi length/sec
initial rate conditions
Blade states initial x1i, x21, x3i1 rad
displacement
conditions
Blade states initial xrli, xr2i, xr3i rad/sec

rate conditions

28




Table 6.2 shows the basic simulation case for the parameters in table 6.1. These
base values will serve as a starting point for each simulation, i.e. when a specific parameter
is changed for a simulation, it is understood that all other parameters will be set to the

base case values.

Table 6.2 Parameter Settings for Basic Simulation Case

mb(1) mb(2) mb(3) M(1) M(2)
0.1 slugs 0.1 slugs 0.1 slugs 6.5 slugs 6.5 slugs
R Omega el z

10£ 170 radians/sec 05ft n/12 radians
Phi(1) Phi(2) Phi(3) -
0 radians 2x/3 radians 47/3 radians
c1) c(2) v(D) v(2)
0 lbs/fps 0 Ibs/fps 0 Ibs/fps”™2 0 Ibs/fps™2
Czeta(1) Czeta(2) Czeta(3)
0 ft-Ibs/(radians/sec) 0 fi-Ibs/(radians/sec) 0 fi-Ibs/(radians/sec)
Vzeta(l) Vzeta(2) Vzeta(3)
0 fi-Ibs/(radians/sec)"2 0 fi-Ibs/(radian/sec)"2 0 fi-lbs/(radian/sec)"2
Ke(1) Ke(2) Ke(3)
0 fi-Ibs/radian 0 fi-lbs/radian 0 fi-Ibs/radian
Kd(1) Kd(2) Kd(3)
0 ft-Ibs/radian”3 0 fi-lbs/radian"3 0 fi-Ibs/radian’\3
Ks(1) Ks(2) Ks(3)
0 fi-Ibs/radian 0 fi-lbs/radian 0 fi-lbs/radian
K1) K(2)
113,000 Ibs/ft 113,000 Ibs/ft
xXi ‘ xYi x1i x2i x3i
0ft oft 0 radians 0 radians 0 radians
xrXi xrYi xrli xr2i xr31
0.5 fi/sec 0 ft/sec 0 radians/sec 0 radians/sec 0 radians/sec

The basic case is intentionally set up with zero damping and with a rotor speed set
approximately at the center of the regressing lead-lag mode instability region. The first set
of simulations will demonstrate the system behavior when excited with an initial fuselage

velocity as indicated in Table 6.2. Figure 6.1 and Figure 6.2 show the lead-lag time

29




histories and the fuselage center of mass trajectory (displacements are in feet) for the basic

case.
Rotor Blade Lead-lL.ag Displacement Time Historles
0.4 // \\
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Figure 6.1 Rotor Lead-lag Displacements for Basic Parameter Case Settings, Center of Self Excited
Region.
Unless otherwise specified, for plots of rotor blade motion, i.e., lead-lag and flap ,

the colors red, blue, and green distinguish the individual blades.
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Trajectory of Fuselage Center of Mass
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Figure 6.2 Fuselage Trajectory for Basic Parameter Settings, Center of Self Excited Region.

As expected, Figures 6.1 and 6.2 show the rapid divergence of the model as a
result of being in the center of the self excited region and perturbed with an initial
fuselage velocity in the x-direction. The diverging spiral path of the fuselage center of
mass is a characteristic result of the regressing lead-lag mode instability.

Figure 6.3 and 6.4 show the corresponding results for operation below the self
excited region. Figures 6.3 shows a beat or modulation of the blade response but no
divergence. The beat phenomenon indicates the blade lead-lag motion consists of two
‘dominant modes closely spaced in frequency. The fuselage center of mass trajectory
shown in Figure 6.4 shows an elliptical path with the major axis of the ellipse rotating
about the zero displacement position. Both the beat phenomenon and the precession type

motion of the fuselage seem to be a characteristic behavior of a system operating outside
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the self excited region. It is interesting to point out that this behavior is also characteristic

of spherical pendulums.

Lead-lL.ag Displacement Time Histories
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Figure 6.3 Rotor Lead-lag Time Histories, Rotor Speed Below Self Excited Region
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Trajectory of Fuselage Center of Mass
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Figure 6.4 Fuselage Trajectory for Basic Parameter Settings, Rotor Speed Below Self Excited
Region

Figures 6.5 and 6.6 show the results of a simulation where rotor speed was set
above the self excited region. Again, the fuselage exhibits an elliptic whirling motion with

the major axis of the ellipse rotating about the zero displacement position while the blade

lead lag motion follows a beat pattern.
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Lead-lag displacement time histories
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Figure 6.5 Rotor Lead-lag Time Histories, Rotor Speed Above Self Excited Region

Trajectory of fuselage center of mass
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Figure 6.6 Fuselage Center of Mass Trajectory, Rotor Speed Above Self Excited Region
Figure 6.7 is the Coleman stability plot [Ref. 2] for the basic configuration. The

red tines indicate the boundaries of the self excited region and the blue line marks the
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center of the self excited region. The X’s indicate the operating points for the three cases

shown in Figures 6.1 through 6.6.

Coleman Stability Chart (isotropic hub)
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Figure 6.7 Coleman Stability Plot for Basic Case

At this point, a comparison was made between the simulation model and a time
history solution of Coleman’s and Feingold’s equations. Bramwell [Ref. 17] derives
Coleman’s and Feingold’s equation in a form equivalent to that of the simulation model
with the blade displacements expressed in the rotating coordinate system and the fuselage
displacements expressed in the fixed coordinate system. These equations were solved in
the fixed coordinate system using an eigenvalue analysis and the solutions transformed
back to rotating coordinate system. A comparison was then made with the lead-lag
displacement time history of the simulation model. Figure 6.8 shows the result of the
comparison using the parameters of the basic configuration with a moderate amount of

damping added to rotor blades and fuselage. Figure 6.8 shows excellent agreement
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between the two solutions with a significant departure between the two occurring only
when displacements get very large. Thus, for the limiting case of an isotropic hub with
linear spring stiffness and damping, the above comparison offers some amount of

verification as to the accuracy of the simulation model.

Comparison of Simulation Results to Solution of Colaman Equations
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Figure 6.8 Comparison of Simulation Model to Coleman’s Model

Moving on from the basic results and model verification, some of the more
interesting cases that were simulated will now be discussed. Figure 6.9 shows a
comparison between a case where all blade lead-lag dampers are operating and a case
where one damper is inoperative. The first plot of Figure 6.9 shows a rotor with all blade
dampers operating, in the second plot, the blue damper is disabled by reducing the
damping coefficient by two-thirds. As is evident from the plot, the very slightly unstable

case with full damper operation is made highly unstable by failing one damper.
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Lead-lag time histories:effect of one damper inoperative
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Figure 6.9 One Lead-Lag Damper Inoperative
Figure 6.10 shows the results of simulating damage to a rotor blade by reducing

the mass of the blue blade by 20%. The undamaged blades are forced to oscillate around
a non-zero displacement position in order to compensate for the damaged blade, but the

amplitudes of all the blade oscillations appear to be constrained.
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Lead-lag ime histories:simulated one blade damaged
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Figure 6.10 Simulated One Rotor Blade Damaged

Figure 6.11 shows the effect of enabling lead-lag stdps in the model. The figure
compares the time history of a blade with no stops with that of a blade with stops

simulated at +15 degrees. Figure 6.12 shows the corresponding fuselage displacements.
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Comparison of Lead-lag motion with and without blade stops
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Figure 6.12 Fuselage Displacements with and without Simulated Lead-lag Stops




The objective of the next set of simulations was to examine the effect of a

nonlinear flexbeam incorporated into a bemingless rotor design. The nonlinear behavior of
the flexbeam was assumed to be that of a Duffing spring where the restoring moment is

given by
(Mg)pm —K(+K (3 6.1)

K. is the linear stiffness and K the nonlinear stiffness. Simulations were conducted for
several values of the nonlinear spring constant keeping the linear coefficient constant at
22,000 fi-Ibs/radian. Results are shown in Figure 6.13. The primary effect of increasing
the nonlinear spring constant is in the limiting of the amplitude of the lead-lag response.
As is depicted in the Figure 6.13, the case for K;= 0 is very unstable and a helicopter
caught in gfound resonance in such a configuration would most likely experience
catastrophic failure. By adding the hardening (cubic) term, the unbounded growth in
amplitude can be checked as is apparent from the responses for the cases of K;=4E+5 and
K;=8E+5. As the amplitude increases, the magnitude of the nonlinear term becomes

" more influential and effectively changes the frequency of oscillation, shifting it outside of
the unstable region and allowing the oscillations to decay. Once the amplitude decays to
where the influence of the nonlinear term becomes small the cycle repeats itself. While the
limiting amplitudes for the nonlinear cases of Figure 6.13 are still large for lead-lag
displacements (on the order of 30 to 40 degrees), this limiting behavior may be enough to
prevent destruction of an aircraft if ground resonance were to be excited. In flight , when
lead-lag displacements are small, the hardening effect of a nonlinear flexbeam would be

negligible, and could be designed to act as soft inplane in order minimize hub moments.
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Figure 6.13 Effect of Hardening Duffing Flexbeam on Lead-lag Response

It is important to note that the elastic behaviors of the flexbeams modeled by the
curves in the upper plot of Figure 6.13 are purely hypothetical and were selected

arbitrarily in order to illustrate the effect that nonlinear elastic behavior could have on

rotor system response and stability.
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B. COMPLEX MODEL

The complex model is based on a configuration used by Straub [Ref. 12]. The
computer code nomenclature and parameter values for the basic case used to conduct
simulations for this study is contained in Appendix F. Appendix F is an example of a the
MATLAB?® input file used for the complex model. This method of input, as opposed to
the graphical interface masking feature used for the simple model [Ref.15], was more
convenient in the case of the complex model due to the large number of parameters.
What follows are examples of some of the time histories generated from simulations
completed with the complex model.

Figures 6.14 and 6.15 show the flap and lead-lag response of the rotor to a
fuselage roll perulrbaﬁon (initial angular displacement about the fuselage x-axis). For this
case the ground resonance was not excited and both the flap and lead-lag motions settle
very quickly. Notice that the lead-lag displacement settles around a non-zero steady state
position. This is due to the aerodynamic drag on the rotor blade, the modeling of which is
discussed in the next section.

The next set of figures show the results for the same configuration used for
Figures 6.14 and 6.15, but the rotor rotational speed has been changed so that ground
resonance is excited by the roll perturbation. Figures 6.16 and 6.17 show the flap and
lead-lag response for this case, and Figure 6.18 shows the trajectory of fuselage pitch and

roll displacements
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Fiap Response to Fuselage Roll Perturbation
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Figure 6.15 Lead-lag Response to Fuselage Roll Perturbation
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Flap Response to Fuselage Roll Perturbation (Ground Resonance)
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Figure 6.17 Lead-lag Response with Ground Resonance Excited
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Fuselage Pitch and Roll Displacement Trajectory
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Figure 6.18 Fuselage Displacement Trajectory with Ground Resonance Excited

The next result, shown in Figure 6.19, is the lead-lag response with one damper
inoperative. For this case, the system has enough inherent stability to settle out after the
initial fuselage displacement. The undamped blade (blue blade) simply settles out at a
higher amplitude, but this amplitude is small enough that the inertial forces that arise from

the imbalance have a small effect.
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Figure 6.19 Lead-lag Response with One Damper Inoperative
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VII. INTRODUCING AERODYNAMICS TO THE MODEL

Aerodynamic forces were derived using quasi-steady strip theory. Stall,
compressibility, reversed flow, and wake effects are ignored, and induced flow is obtained
from momentum theory. The results of the derivation are the aerodynamic moments about
the blade hinge in the flap and lead-lag directions. These moments are entered as
generalized aerodynamic forces in the Lagrangian derivation. The development of the
aerodynamic equations was adapted from the approach utilized by Kaza and Kvaternik
[Ref. 20] for a flap-lag stability analysis on rigid articulated blades. The main difference
between their approach and the approach outlined in the following paragraphs is that
fuselage motion and its influence on blade motion is considered here.

The relative air velocity at a point on the k rotor blade due to forward flight at
any instant in time, expressed in inertial coordinates is

(7..), = 1 QRe, +0e, + AQRe, (7.1)
The total velocity relative to a blade element is obtained if the above expression is added
to the negative of the time derivative of the instantaneous position of the blade element. In

inertial coordinates the total velocity is given as
(thd ) = (f;air) ' (/-5) I (71.2)
This velocity is expressed in blade deformed coordinates through the following

transformation,
Vi) = B (B)E () EGR)E (N ), (73)
where T, 7>, and T3 are given by equations (3.1) to (3.3). (VW) 4o Can also be expressed

as
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V), =Uze. -U;2, -U . (7.4)

y ~Yp
Thus, from the components of the vector expression (7.4), the radial, tangential, and
perpendicular components of the total velocity, with respect to blade deformed
coordinates, are given.

The lift and drag acting on an elemental section of blade are

1
dL = EpacUzacb (7.5)
_ l 2 Cdo)
@—zpacU ( 4 dr (7.6)
where
U=\U.?+U,? a7
The angle of attack, a, is
U
a=9—tan“(—i) =0-¢ (7.8)
U,

where @is the section pitch angle. The lift and drag are then transformed to give the
resultant forces along the y and Z axes of the blade deformed coordinate system, thus
giving
dF; = —dLsin(¢ )~ dDcos{¢ ) (7.9)
dF, =dLcos(¢ )~ dDsin(¢ ) (7.10)
To obtain the generalized aerodynamic forces from the above expressions, the principle of

virtual work is applied for a flap - lag blade displacement sequence. To accomplish this

the blade differential forces given by (7.9) and (7.10) are transformed to the blade

48




undeformed coordinate system since the generalized blade displacements, £i(?) and §i(?),

are expressed in this frame of reference. The transformation is as follows

dF., 0
(@), =|aF, |=5(6)5(8.) 4F; (7.11)
dF. dF.

z z

Applying the principle of virtual work, the generalized aerodynamic forces on the k™ rotor

blade are
R (= O Py _pa R | |
(0,), = [} (@), '(Z—ﬂ;“) = | reos(¢)dF, (112)
(a,), = [, (@), [—5*/;—32;&") = ['rar, (7.13)

where p;, , is the position vector of an arbitrary point on the deformed rotor blade

elastic axis with respect to the blade undeformed coordinate system.

To simplify the inclusion of aerodynamics into the model, the integral expressions
for the generalized aerodynamic forces appearing in equations (7.12) and (7.13) will be
evaluated by assuming the mean value of the forces, dF, and dF;, occur at the r = 0.7R
radial position, and that this radial position also corresponds to the center of lift and drag
on a rotor blade. With these simplifying assumptions, the resulting generalized

aerodynamic forces are

(m,), =07R* codg, NaF), ., (7.14)
(m,), =07R*(aF;) (7.15)

r=0.7R

The inflow ratio, 4 , and advance ratio, u appearing in equation (7.1) are
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iz (Vsina—v,.)

OR (7.16)
V cosa
H="0R (7.17)

The induced flow, v;, in equation (7.16) is calculated by equating the integrated thrust to
the thrust from momentum theory, leading to the result,

C,QR

v, = ZJ;I_—T—){T (7.18)
The thrust coefficient, Cr, is determined by adding the average total lift generated by each
rotor blade over one rotor revolution and dividing the quantity, p 7 Q?R*.

For this study, only a rotor-fuselage system in the ground resonance regime is
considered, so the thrust coefficient and forward velocity were set to zero, giving an
inflow ratio of zero, which corresponds to a steady state rotor blade pitch angle of
(6 ) = 0, assuming an uncambered blade. This simplifies things greatly for this study by
eliminating the requirement to trim the rotor system for a certain aircraft weight and flight
condition. The aerodynamics came into play in analyzing the effects active pitch inputs
about a flat pitch condition on ground resonance stablhty This will be discussed further in

a later section.
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VIII. MOVING BLOCK TECHNIQUE

One of the drawbacks of performing direct numerical simulation of dynamic
systems is that time histories of system degrees of freedom only offer qualitative
information on the effect that certain system parameters have on system stability or
performance. In order to quantify the effects of varying certain system parameters, such
és rotor speed, flex-beam stiffness, and active control inputs, on rotor-fuselage stability in
the ground resonance regime, a method was needed to estimate system damping levels
from the system time histories. Moving Block Analysis, a technique developed at
Lockheed in the 1970’s, is a digital method of analyzing a transient time history to obtain
modal damping and frequency. The technique is first described in some detail by
Hammond and Dogget [Ref. 18]. |

The technique is analytically based on the typical transient response of a second

order system. Consider the following transient time history,
Aet) = Ae ™ sin(wt + 9) (8.1)
where
0’ =0,(1-¢?) (8.2)
The finite Fourier transform of )(7) at the damped frequency, @, from time 7 to 7+ T'is,
Flo)= [ 4e™ sin(ox + 9) et 83)
After carrying out the integration and making the assumptions that {<< 1, s0 @, ~ @ , the

magnitude of the Fourier transform can be written in the following form,
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N e

IF(o)| =%e—;ml:1+gf;(g):’ 8.9

where

flg)=—2e75T 4e%9T 4 (1 —esT )g sin(z(a)r +9 )) -

e"‘“’T(l - e‘g‘”r)g sin{Z(a)(r +7)+ 9 )] ®3)
Taking the natural logarithm of equation (8.4) yields
_ A4Y 1 [1+£()
In|F(@)| = —~cwr + ln(—zz) + Eln(—gz——) (8.6)

The last term in equation (8.6) can be expanded in a Taylor series to yield

—
+ —:lzln[(coT)2 + (wT){sin(z(wr +8 ))-sin(2fw(z + 1)+ 9 ])}] (8.7)
gwri:Za)Ti- sin( o7+ 9 ))— 3sin[2(w(t +T)+39 )]J

4 oT + sin(Z(a)t +9 ))— sin[Z(a)(z' +T)+3 )] 7

From equation (8.7) it can be seen that if In|F(w)| is plotted versus 7, the resulting curve
will be the superposition of a straight line with slope — ¢ and an oscillatory component
which oscillates about the straight line with frequency 2w . If it is assumed that T'is an
integral multiple of the basic period of oscillation, such that

27N
=— 8.
T== ®8)

equation (8.7) reduces to

In|F(o)| = ~cor + %gsin(ﬁ!(a)r + .9) + C) (8.9
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where C is a constant given by
A) soT
C= 1”(2a> +In(wT) - > (8.10)

From equations (8.9) and (8.10) it can be seen that if successive discrete Fourier
transforms at a frequency @ are performed for 0<7<¢ —T , where ¢, is the total signal
length, a plot can be made from which the damping can be determined. 1t is this
procedure which is the basis for the moving block analysis [Ref. 18].

For a sampled signal, the moving block method is applied by first estimating the
frequency of interest embedded in the signal using a Fast Fourier Transform (FFT). A

block length is selected consisting of N data points, and the moving block function,
in|F(@,7) , is calculated for 7 = 0. The block is then shifted one data point (time step) at
a time and the moving block function recomputed for 7 =nA¢, wheren=0,1,2, ...,N-
N;. The plot of lan (@, z')| versus 7 is fitted with a linear least squares fit, and the
damping is estimated from the slope of the curve [Ref. 19].

For this study, a moving block analysis program was developed with MATLAB®.
The m-file code is contained in Appendix E. Moving block was applied in the code by
adapting and combining the procedure§ outlined by Hammond and Doggett [Ref.18] and
Bousman and Winkler {Ref. 19]. The method used for computing the moving block

“function once the frequency and block size were determined was to evaluate the Fourier

coeflicients for the first time block with the following relations

2 % 27k x
ak(z')z-]—V—Zf(x+z')cos Nb

b x=0 b

(8.11)
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P 2k, x

b,(7) = Zf(x-l- t)sm (8.12)
where
k, = o N,At (8.13)

and f{x+7) is the signal data (for the first block 7= 0) . The Fourier coefficients at the

next time step are then calculated using the following recursion relations,

a,(r+1) = {a,, (:)+Nib[ F(N, +9)- f(r)]} 2;") +b,(2) m(zj\’:) (8.14)
b(r+1) = —{aJt (7) +—[f(N + ‘l’ (1)]} 2rk, ) ) (8.15)

The magnitude of the natural logarithm of the moving block function is then given by

In| F(w,7)] = %1{1{@(2‘)2 +5, (2')2] (8.16) |

The accuracy and speed of the moving block analysis code is dependent on several
factors. The frequency resolution of the FFT algorithm is inversely proportional to the

signal length and sampling rate, or,

1
Aa)-——];rzt— 8.17)

For the current study, signal frequencies will range from approximately 5 to 30 Hz, and
sampling rates will be between 100 and 2000 Hz with the typical record lengths of 2 to 5
seconds. The worst resolution considering these figures would be approximately 0.5 Hz,
an error of 10% for the low frequency signal. To compensate for this, a refinement
procedure [Ref. 18] is incorporated into the code. Additionally, the FFT algorithm is

optimized to operate on record lengths in powers of two. If the record length is not a
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power of two, it is automatically padded with the required number of zeros, which
degrades the accuracy of the frequency estimation. To remedy this, all signal lengths were
controlled to be exactly in powers of two by adjusting stop time and the size of time steps
when executing simulations.

The moving block code developed for this study was specialized for handling uni-
modal or bi-modal signals, i.e., signals with one to two dominant modes. For the bi-modal
case, sufficient frequency separation must exist such that the resolution offered by the
methods described above will be adequate enough for accurate damping estimates of both

modes. A test signal of the following form was used to verify the accuracy of program,

-2rogt -2ma,6,

f®=4 exp(—‘/-—l———_—g—) sin(Zﬂco,t) +4, exp(——T:Z—i) si'n(szt) (8.18)

Parameter values were fixed to match the test case considered in Ref. 9, and were: 41=A4,

= 1000, ¢, =001, g, =002, @, = 8.0 Hz, and @, = 6.0 Hz. The results of the moving

block analysis on the test signal shown in Figure 8.1 is shown in Figure 8.2. The first plot
of Figure 8.2 shows the resulting power spectrum generated by a FFT of the test signal.
The second plot is the result of refining the FFT frequency estimates. The third plot is the
crux of the moving block analysis where the negative of the slopes of the straight line least
square fits give the damping ratios when divided by the corresponding damped
frequencies of the particular mode. The damping and frequencies obtained from Figure

8.2 are summarized in the Table 8.1.
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Moving Block Test Signal
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Figure 8.2 Result of Moving Block on Test Signal
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Table 8.1 Summary of Results for Moving Block Bi-modal Signal Test Case

Parameter — @, 51 @, Sz

Test signal 8 Hz 0.01 6 Hz 0.02

Moving Block Analysis 8.0314 Hz 0.0098 5.9535 Hz 0.0198

From the results, it can be seen that the two modes of the test signal are
sufficiently far apart in order to obtain reasonably accurate damping estimates. It is,
however, important to note that as the frequency separation of a bi-modal signal decreases
to approximately 5% [Ref. 19], accurate damping estimates will no longer be possible.

Figure 8.3 shows the effect of varying rotor speed on first lead-lag mode damping
as determined by a moving block analysis. The configuration used for Figure 8.3 is the
basic configuration with a moderate amount of damping added to the fuselage and blade
motions in order keep time histories within reasonable bounds when simulating inside the
self-excited region. The initial excitation was provided by setting an initial fuselage

displacement in the x-direction. The rotor frequency (abscissa in Figure 8.3) is non-

, K
dimensionalized by the fuselage natural frequency ( M" ). The center of the regressing

lead-lag mode instability should occur at a non-dimensional frequency

—_—= (8.19)

for a rotor system modeled with point masses. For the basic configuration, the center of

Q
instability corresponds to o= 1288, which is in good agreement with Figure 8.3.
0




First Lead-Lag Mode Damping vs. Rotor Speed

0.08

0.07

0.08

0.05

0.04

0.03

0.02

Damping Ratio from Moving Block

0.01 = -

o [e]
[e] b o

-0.01
0 00.9 1 1.1 1.2 1.3 14 15 1.6 1.7 1.8 1.9
Omega/Omegal Omegal = sqrt(Kx/Mx)

Figure 8.3 Effect of Varying Rotor Speed on First Lead-lag Mode Damping

Figure 8.4 shows the results of a moving block analysis completed for rotor
systems with differént Deutsch numbers. Deutsch [Ref. 21] derives a criteria to determine
the quantity of damping necessary to eliminate grouhd resonance instability through the
full range of rotor speeds. The criteria requires that the product of the blade and fuselage
damping parameters be greater than a certain parameter determined by the rotor-fuselage
configuration. The rotor-fuselage configuration parameters for the case of the simple

model with an isotropic pylon and rotor are given by the following,

A = —% (8.20)
KC
A =5 8.21)
A, = _ Nm, (8.22)
2(M, + Nim,)
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I=mR*

The damping parameters for the pylon and rotor blades are

A S
? (MP+Nm,,)a>p
A C
¢ lo,
where
K
% =\3

Deutsch’s criteria for elimination of ground resonance is

]'F)LC

——>1
o1

D=

where

1+JA, +A, - A A,

P= 1-A,

(8.23)

(8.24)

(8.25)

(8.26)

(8.27)

(8.28)

Here, the ratio of the damping product to the configuration parameter is defined as the

Deutsch number , D .
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Moving Block Results Parametized With Deutsch Criteria
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Figure 8.4 Moving Block Results Parametized by Deutsch Number
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IX. ACTIVE CONTROL

Several studies ﬁave addressed the problem of eliminating helicopter
aeromechanical instabilities with acﬁ§e control. Straub [Ref. 12] and Straub and
Warmbrodt [Ref. 13] use linear state space methods to investigate the effects of
systematically varying feedback gain and phase in a closed loop system on the rotor-
fuselage dynamic behavior. Takahashi and Friedmann [Ref. 22] move one step further by
proposing a simple closed loop controller based on an optimal state estimator in
conjunction with optimal state feedback determined from linear quadratic Gaussian (LQG)
optimization techniques. Weller [Ref. 23] showed by experiment that a fixed gain
controller which transforms fuselage states into swashplate inputs can greatly improve
aeromechanical stablhty margins and eliminate unstable envelopes. Wood , et al., [Ref.
24] detailed the design and implementation of a higher harmonic pitch control system and
demonstrated that it can be an effective means of vibration reduction. For the scope of
this study a similar approach to the one used by Weller [Ref. 23] in his experimental
investigation was incorporated into the simulation environment.

In the most general case, the complex model allows rotor blade pitch inputs to be
independent of one another so that the simulation of individual blade control is possible.

The general form of a pitch input is,

6, =(8,), sin(n0 +@,)+(6.), cosln + ®,) ©.1)

where 7 is the harmonic number of the pitch frequency, (9,) , and (Gc) , are the input

phase and amplitude weighting parameters (for a first harmonic input they would

correspond to longitudinal and lateral cyclic for the k™ rotor blade), and @, is the
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azimutha! phase angle of the k® rotor blade. For the following active control example,
active pitch inputs via a swashplate were simulated for the a three bladed rotor, thus, »
was set equal to unity and the amplitude and phase weighting parameters for each blade

were set equal to each other such that,

(6),=(6),=(6), =6 9.2)
(6),=(0),=(0), =4 ©3)

Pylon pitch and roll position feedback was transformed into swashplate control

inputs by the following fixed gain relationship

[Q]_ Kcodg) Ksin(g) r,] 04
6,] |-Ksin(¢) Kcodg)ir ©4)
Stability measurements were made based on time histories of the orthogonal components

of the rotor center of gravity offset given by

x_ =3 (9.5)

=5 (9.6)

where,

(=),
),

(cosce ool oo ) - sinf6.Jsinly YR, ), ooyl 07
(cos(gk)cos(ﬂ )sm(y/,‘)-ksm({k)cos(y/k))(R ) + sin y/,, (0.8)
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These time histories contain both regressing and progressing mode contributions. The
damping levels of these modes for various gain and phase settings were determined using
the moving block analysis program described in a previous section.

Initially, a simulation was run with the feedback gain and phase set to zero in order
to get a baseline response. Figure 9.1 shows the results of the baseline response of the
rotor center of gravity offset position. Figure 9.2 displays the results of performing a
moving block analysis on the x.g signal of Figure 9.1. It can be seen in both figures that
the center gravity offset signal contains both the regressing and progressing lead-lag
modes. The progressing mode damps out relatively quickly and is of little influence after
approximately 0.4 seconds of simulation (it can be seen that the high frequency component

of the signals in Figure 9.1 “washes out” by 0.4 seconds).
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The moving block analysis determined a damping ratio of -0.0247 (©=7.1511 Hz)
for the regressing mode and a damping ratio of 0.0230 (#=27.1916 Hz) for the
progressing mode. The next step was to conduct the same analysis as was completed on
the baseline case for a range of active control phase angles at fixed values of gain.

Figure 9.3 displays the results of running a controller phase sweep at gain settings
of K=0.4 and K=0.8. The case chosen is slightly unstable, with a no control damping
ratio shown by the green line. The results demonstrate that stability can be improved by
active swashplate control inputs and that the simulation techniques used in this study can

provide a useful tool for predicting which gain and phase combinations would be required

for a simple controller.
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Figure 9.3 Damping Ratio For Controller Phase Sweep (K=0.4 and K=0.8)
Figure 9.4 shows the SIMULINK® model utilized for complex model simulations

and the active control analysis.
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X. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

A. CONCLUDING REMARKS |
A method for formulating and mrtomﬁtically coding the equationé of motion of a

coupled rotor-fuselage system by use of symbolic processing software and dynamic
simulation software has been developed. The resulting mathematical models were used to
perform simulations of coupled rotor-fuselage systems in ground resonance. Analysis of
the dynamic and stability characteristics were quantified using the moving block technique.
A simple rotor model was used to demonstrate essential characteristics of ground
resonance and the effects that parameter variations such as rotor speed, flexbeam elastic
behavior, damper failure, and rotor blade damage have on those characteristics. A more
complex model, adding fuselage pitch and roll and rotor blade flap degrees of freedom,
was used to demonstrate how the modeling technique could be used to explore the effect
of active rotor control on ground resonance. The modeling technique proved to be a very
powerful tool in that it eliminated the time consuming process of manually deriving and
coding the very complex equations of motion of a multi-degree of freedom rotor system
into a dynamic simulation environment. By integrating SIMULINK ®into the process,
with its versatility in analyzing dynamic systems, the technique has direct application to the

design of modern damperless rotor systems.
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B. RECOMMENDATIONS FOR FUTURE RESEARCH

1.

2

Addition of rotor blade torsional degrees of freedom to overall model.
Addition of geometric characteristics such as pre-cone, pre-sweep, offset hinge
inclination, elastic coupling (pitch-lag, lag-flap, etc.).

Addition of unsteady aerodynamics such as a finite state wake model or
dynamic inflow model.

Incorporation of a trim routine so the model can be used for hover and forward
flight aeromechanical stability analysis.

A comprehensive study of active control methods using the developed
modeling technique, including optimization techniques (such as LQR and
LQG) and individual blade control.

Validation of simulation results with experiment.
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APPENDIX A
MAPLE® WORKSHEET USED TO GENERATE AND CODE THE EQUATIONS

OF MOTION FOR A COUPLED ROTOR FUSELAGE SYSTEM
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APPENDIX A
(MAPLE WORKSHEET)

EQUATIONS OF MOTION FOR A HELICOPTER IN GROUND RESONANCE
CONSIDERING 4 FUSELAGE DEGREES OF FREEDOM AND ROTOR BLADE FLAP AND
LEAD-LAG DEGREES OF FREEDOM

[ > restart:

> with(linalg):

Warning, new definition for norm
L Warning, new definition for trace

[ > diffl:=(arg)->map(diff,arg,t):

[

[ Define coordinate transformations:

> psi:=Omega*t+Philk];
yi=Q1t+d,
[ > T3:=alpha->matrix (3,3, [cos(alpha),sin (alpha) ,0,-sin(alpha) , cos (alp
ha) ,0,0,0,1]);
T3 := o —> matrix(3, 3, [cos(a), sin(et), 0, —sin(et), cos(a), 0, 0, 0, 1D
[ > T2:=alpha->matrix (3,3, [cos(alpha),O, sin(alpha),0,1,0,-sin (alpha),0
,cos (alpha) 1) ; '
T2 = o —> matrix(3, 3, [cos(a), 0, sin(e), 0, 1, 0, —sin(a), O, cos(a)])
> Tl:=alpha->matrix(3,3,[1,0,0,0,cos (alpha) ,sin(alpha) ,0,-sin (alpha)
,cos (alpha)l); )
T1 = —> matrix(3, 3, [1, 0, 0, 0, cos{a), sin{a), O, —sin(a), cos(et)])
> M1:=transpose (multiply (Tl (r[1](t)) ,T2(r[2](t))))
cos(r,(1)) —sin(r (1)) sin(r,(1)) —cos(r (7)) sin(7,(7))
Ml = 0 cos(r, (7)) —sin(r,(7))
sin(r, (7)) sin(r (¢)) cos(ry(?)) cos(r,(1)) cos(r,(2))
> M2:=transpose (T3 (psi));
cos(%1) -sin(%1l) O
M2 :=]sin(%1) cos(%l) O
0 0 1
%1 :=Q1+®,
> M3:=transpose (multiply (T3 (zetalk] (t)) , T2 (betalkl(t)))):
cos(§(1)) cos(B(1))  —sin(§(#)) cos(B (7)) —sin(B,(7))
M3 = sin( (7)) cos(§(1)) 0
cos(§(1)) sin(B(7))  —sin(§,(1)) sin(B (1)) cos(B(1))
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[> M4 :=multiply (T3 (zetalk] (t)),T2(betalk] (t)) T3 (psi),T1(r[1] (L)) T2(
r[2](t))):

[
[ Energy expressions for kth rotor blade

[
[ Kinetic energy of kth blade (TBk)
[
[ > rhoFI_I:=vector([u[l](t),ul[2](t),0]):

[ > rhoHF:=vector ([0,0,h]):

[ > rhoHF I:=multiply (M1, rhoHF):

[ > rhoBuH:=vector([el,0,0]):

[ > rhoBuH_I:=multiply(M1,M2, rhoBuH) :

[ > rhoPBd:=vector([R,0,0]):

[ > rhoPBd_I:=multiply(M1,M2,M3,rhoPBd) :

[ > rho:=matadd(rhoFI_I,matadd (rhoHF I ,matadd (rhoBuH_ I, rhoPBd I))):
[ > V:=diffl (rho):

[ > Vsqr:=V[1]"2+V[2]*2+V[3]"2:

> TBk:=1/2*mb[k]*Vsqgr;

1Bk :=lmbk (([ 1(t))+ sin(7, (t))( (z‘)) sin(r,(t)) h

~ cos(r,(1)) cos(r(1)) ( m] h+ (—sm(rz(t)) [Qrz(r)) cos(%3) — cos(r,(1)) sin(%3) ©
- cos(r(1)) [ mj sin(r,(1)) sin(%3) ~ sin(r,(£)) cos(r,(1)) (5 »mj sin(%3)

— sin(7,(£)) sin(7,(£)) cos(%3) Qj el + ([—sin(rz(t)) (—:—l z‘z(t)j cos(%3)

— cos(r(1)) sin(%3) Q - cos(r,(1)) (a r«r)) sin(ry(1)) sin(%3)

— sin(7,(1)) cos(r,(£)) ( 2(t)j sin(%3) — sin(r, (1)) sin(r,(#)) cos(%3) Q) cos(§(1))
cos(B,(1)) — (cos(7,(£)) cos(%3) — sin(r (7)) sin(ry(¢)) sin(%3)) sin(£,(¢)) %2 cos(B,(£))

— (cos(r,(1)) cos(%3) — sin(r (t)) sin(r,(¢)) sin %3)) cos(&, (1)) sin(B(£)) %l + (
sin(r, (7)) ( 2(t)) sin(%3) — cos(7,(1)) cos(%3) 2

0
—cos(7(%)) ( 1(t)) sin(r,(#)) cos(%3) — sin(r,(2)) cos(ry(2)) ['—72(1)j cos(%3)

+ sin(r, (1)) sin(r,(¢)) sin(%3) Q) sin(€,(7))
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+(—cos(r,(¢)) sin(%3 ) — sin(r (¢)) sin(r,(¢)) cos(%3)) cos(E (1)) %2

0
+ sin(r,(2)) ("" rl(t)] sin(7,(2)) cos(&,(#)) sin( B.L1))

~ cos(r,(1)) cos(u(t))( (r)) cos(&(1)) sin(B(1))
+ 00s(ry(£)) sin(r;(1)) sin(5(1)) %2 sin(B())

2
—cos(r, (1)) sin(ry(1)) cos(G(#)) cos(B(£)) %ljR] + ((g; uz(t)) —cos(r(%)) (_60_/ rl(t)] h
- sin(7,(1)) ( rl(t)) sin(%3) el + cos(r,(1)) cos(%3) Q el +[

—sin(r,(1)) ( rl(z‘)J sin{%3 ) cos(&,(¢)) cos(By(2))
+cos(ry(1)) cos(%3) Q cos(L (7)) cos(By(t)) — cos(ry(1)) sin( %3 ) sin(§,(¢)) %2 cos(B,(¢))

0
— cos(r,(2)) sin(%3) cos( (7)) sin( B, (7)) %1 - sin(r,(£)) (5;1‘1(1)) cos(%3) sin(§ (1))

- cos(r,(1)) sin(%3) Q sin(§,(2)) + cos(r(1)) cos(%3) cos(C (7)) %2
+sin(G(£)) %2 sin(B,(1)) sin(r,(1)) = cos(G(1)) cos(B(1)) %1 sin(ry(1))

— cos(& (1)) sin( B(1)) cos(r,(1)) @;rl(r))) RT ¥ (—sin<rl<z>> (% r&t)) cos(r,()) b

— cos(r,(1)) sin(r,(1)) (grz(t)j h+ (cos(rz(t)) [—(?- 1'2(1‘)) cos(%3 ) — sin(r,(£)) sin(%3) Q
v cos(,l<t>)["’ m) cos(r,(1)) sin(%3) = sin(ry(1)) sm(r2<t))( m} sin(%3)

+ sin(r,(£)) cos(r,(1)) cos(%3) Q) el + ((cos(rz(t)) (a rz(t)) cos(%3)

— sin(r,(#)) sin(%3) Q + cos(r,(1)) [a n(t)) cos(r,(1)) sin(%3)

- sin(r, (1)) sin(r,(£)) ( 2(z‘)) sin(%3 ) + sin(#,(#)) cos(r,(¢)) cos(%3) Q) cos(&(%))
cos(B(#)) — (sin(r,(¢)) cos(%3) + sin(ry(2)) cos(r,(1)) sin(%3)) sin(L,(£)) %2 cos(B,(1))

— (sin(7,(#)) cos(%3 ) + sin(r (1)) cos(r,(?)) sin(%3)) cos(&, (1)) sin( (1)) Y1 +(

—cos(r,(1)) (-6% 1'2(1)) sin(%3 ) — sin(7,(7)) cos(%3) Q
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+cos(r (1)) [_Ba-t "1([)j cos(r,(¢)) cos(%3) — sin(r,(¢)) sin(r,(£)) [g I'Z(l‘)j cos(%3)

— sin(r,(#)) cos(ry(¢)) sin(%3) Q) sin(G,(1))
+ (—sin(7,(¢)) sin(%3 ) + sin(7, (1)) cos(r,(¢)) cos(%3)) cos(E (1)) %62

0
- sin(r,(1)) (5 rl(t)j cos(r,(t)) cos(L,(1)) sin(B(£))

0
—cos(r,{t)) sin(r,(?)) (é? 7'2(t)j cos(&, (1)) sin(B(7))
— cos(r,(#)) cos(r,(2)) sin(§(2)) %2 sin(B,(1))
+cos(7,(t)) cos(r,(t)) cos(L,(£)) cos(B(2)) %IJRJZJ

%1 =2 B(1)
oL, at A

G
%2 = G(0)

%3:=Qt+®,

[
[ Potential energy of kth blade (UBk)
[

[ > UBkl:=1/2*(betal[k] (t)*2*kfl[k]+zetalk] (t)"2*k1l1l[k]):
[ > UBk3:=1/4*(betalk] (t) *"4*kf3[k]+zetalk] (£) ~4*k13[k]):
> UBk :=UBk1+UBk3;

1 2 1 2 1 4 1 4
UBk =2 B0 WL+ G(0) R+ Bo) M+ G0 5,

Dissapative energy of kth blade (DBk)

> DBk:=1/2*diff(beta[k](t),t)“2*cf[k]+1/2*diff(zeta[k](t),t)“2*cl[k]

’

._l(?_ T l(ﬁ )2 1
DBk.—2 atBk(t) cf,c+2 até:k(t) ¢l

Energy expressions for fuselage

Kinetic energy of fuselage (TF)

| O e B R N i B St Y S 2 maneet B m U sy |

[ > TFt:=1/2*%(diff(ufl] (t),t)~2*M[1]+diff (u[2] (t), t)"2*M[2]):
f) TFr:=1/2*(diff(r[1](t),t)AZ*Illﬁg%gFér[Z](t),t)A2*I22—2*diff(r[1](




L t) ,t)*diff(r[2] (t) ,t) *I12):
> TF:=TFt+TFr;

T'F:=l(2u (t)sz +l(—a“u (t))zM +i(gr(t)j2111+l(gr(I)JZIZZ
2! AN VA A 2\t ?
0 0
- (& rl(t)) (—6_; /‘z(t)J 112

Potential energy of fuselage (UF)

T LN} 1T 1)

[ > UFt:=1/2*%u[l] (£) *2*KT1+1/2%u[2] (t) *2*¥KT2:
[ > UFp:=1/2*r[1] (£) "2¥KR1+1/2*r[2] (t) "2*KR2:
> UF:=UFt+UFr;

1 1 1 1
UF:=5u1(t)2 KT1 +'2“u2(t)2 KT2 +-2'r1(t)2 KRI +'£r2(t)2 KR2

[
[ Dissapation energy of fuselage (DF)
[
[> DFtv:=1/2*diff(u[l](t),t)“2*CT1+1/2*diff(u[2](t),t)Az*CTZ:

[> DFrv:=1/2*diff(r[l](t),t)”Z*CR1+1/2*diff(r[2](t),t)“2*CR2:

r > DFth:=1/2*diff(u[1](t),t)AZ*abs(diff(u[ll(t),t))*VT1+1/2*diff(u[2]
L (t),t)“2*abs(diff(u[2](t),t))*VT2:

F > DFrh:=1/2*diff(r[1](t),t)“z*abs(diff(r[l](t),t))*VR1+1/2*diff(r[2]
(t) ,t)"2*%abs(diff(r[2] (t),t)) *VR2:

[ > DF:=DFtv+DFrv+DFth+DFrh;

IS DT ST YO SR CYO
[ (e {2 e,
Lo () 2 g IR 2o

(8 T 0 Ny l(a ; )2 VT2 + ! (—-—a (t))2 2 ()| VRI
A - - ,’ : 5 r

5D ] | D VT 50 2l ) o

(D ]2

—r.(t VR2

\atrz( )

Aerodynamics (Generalized Aerodynamic Forces)

S
i

0
a uy(1)

-+

+
N jms DN N[+

0
5;"2(1)

> Vair:=vector ([mu*Omega*R,0,Omega*lambda*R]) ;
Vair =[LQR,0,QAR]

[ > V_I__t:-—-matadd(-V,Vair) :

L[> V;Bd_t:=map(simplify,multiply(M4,V_I_t)):

[ > UR:=V_Bd_t[1l]:

[> UT:=-V_Bd_t[2]:

[ > UP:=-V_Bd t[3]:

[ > UU:=sqrt(UP"2+UT"2):

| pue— T Y o N |
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[ > aoca:=thetalk]~-arctan (UP/UT) :

[ > dFbeta:=1/2*rhol*a*c* (a0a*UU*UT-cd0/a*UuU*UP) :
[ > dFzeta:=-1/2*rhol*a*c¥ (aoa*UUu*UP+cd0/a*Uu*UT) :
[ > Mbeta k:=0.7%R"2*dFbeta*cos (zetalk] (L))

Mbeta_k = 3500000000

Rplac ([ 0, arctan(

%l =Qt+P,

qu/%Z L %3? %2
D«/v/z + %37 %3 — = Jcos(ck(t))

%2 := R cos(,(1)) (—:—t Bk(z‘)) + cos(r,(#)) sin(B(£)) sin(%1) sin(r,(£)) QAR
+sin(B,(1)) cos(%1) sin(r,(#)) Q A R - sm(Bk(r))sm(%l)cos(rl(m( u;(t))

~ cos(B,(1)) sin(r,(1)) (— uzmj +sin(r,(1)) sin(B,(1)) sin(%1) sin(r, (1)) ( zq(t)j

~ sin(B,(1)) cos(%1) cos(r,(£)) (—a—, ul(t)j sin(r,(1)) cos(B,(1)) cos(ry(1)) ( ulm)

— cos(ry(1)) cos(B,(1)) cos(r(1)) @ A R+ cos(B(1)) cos(r,(1)) el (;f—trzmj cos(%!1)
+cos(B(1)) ( rl(r)] sin(%1) el + cos(B,(1)) R (Q wﬂ cos(%1) sin(Gy(1))
+sm<6k<t))sm(%l)[fj 1<t))h+sm(ﬁk<t))cos(%l)cos(:l(t))[ 2(0)
+sin(B(1)) sin(r,(£)) R sm(e;k(r))( rz(t)J +c0s(%1) R cos(ry(1)) {9_, (r)] cos( (1))
+sm<%1>R( 1(t)jc<>s<ck(t)>+sm(ﬁk(t))Rsm(c;,(t))ﬂ

0
+sin(B,(£)) cos(%1) cos(ry (1)) u Q R~ cos(B,(7)) cos(r,(1)) Rsin(§,(£)) ( 2(t)j sin(%]1)
— sin(r,(#)) sin(B,()) sin(%1) sin(r(£)) L QR + sin(7,(¢)) cos(By(?)) cos(r, (1)) 1 QR

%3 = sin( (1)) cos(B,(¢)) sin(%e1) [6 1(t)j h+cos(§ (1)) el Q+cos(B (1)) RQ

( C/c(t)j +sin(G,(1)) cos(B, (1)) cos(%1) cos(r,(?)) ( rz(t)j

—sin(B () R (g,;rl(l)j cos(%1) — sin(E(¢)) sin(B(7)) [_a_t rl(t)j sin(%1) e/
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+cos(L(£)) el sin(r(2)) [g "2(’)j +cos(&(¢)) sin(%1) cos(7(2)) (’aa—t rz(t)) h

~cos(E, (7)) cos(%1) (grl(t)] h—sin(C, (1)) sin(B,(¢)) cos(r,()) el (‘5; rz(t)j cos(%1)
0 0

+sin(B(#)) cos(#,(#)) R (5 Fy( t)) sin(%1) + sin(r,(1)) cos(B,(£)) R (—8—; r2(t)]

— cos(r,(1)) cos(L(1)) sin{%1) (g ”1(’)) +c0s(7,(1)) sin(§, (1)) cos(B(7)) cos(%1) u QR

+ cos(r,(1)) cos(§ (1)) sin(%1) p QR

= sin(r,(#) ) sin(r,(1)) sin(E()) cos(By(1)) sin(%1) p Q R
+ sin(r,(t)) sin(7; (1)) cos(E(¢)) cos(%1) L QR

— sin(r,(¢)) sin(£,(¢) ) sin(B(£)) cos(r, (1)) Q R

~ cos(r,(1)) sin(G(1)) cos(B(1)) cos(%1) [ u]u))

+ sin(ry(1)) sin(r,(1)) sin(G (1)) cos(By(1)) sin(%1) ( um)
— sin(ry(1)) sin(r(1)) cos(§(1)) cos(%! )[ ulm)
+sin(ry(1)) sin(G(1)) sin(B(1)) cos(ry(1)) (— ulu))

— cos(r,(1)) sin(§(1)) cos(B(1)) sin(%! )( uzm)

+cos(ry(1)) cos(§,(1)) cos(%l) {‘— u2(t)) +sin(§, (1)) sin(B,(¢)) sin(r,(£)) ( uz(t))

+ sin(r, (1)) sin( (7)) cos(B,(¢)) cos(%1) QA R + sin(r,(£)) cos( &, (1)) sin(%1) QAR
+ cos(r,(1)) sin(r, (1)) sin(£,(2)) cos(B,(2)) sin(%1) QAR
—cos(ry(2)) sin(r,(¢)) cos(§,(£)) cos(%1) QAR

+cos(ry(1)) sin(£(£)) sin(B(¢)) cos(r (1)) QAR
r > Mzeta k:=0.7*R"2*dFzeta;

Mzeta k=

ch«/"/32 %22 %2
D«/%3 + %27 %3 + LA J

~.3500000000 R* plac {(ek - arctan[ v
0

%1 =Qt+®,

%2 = sin(§,(7)) cos(B(7)) sin(%1) (g;rl(t)) h+cos(§ (1)) el Q+cos(B (1)) RQ

Page 7




+R[§ck<rﬂ+sm<ck<r>>cos(Bku»cos(%l)cos<r1<t>>(-a—r2(t>]h

~sin(B(1) R [ <r>j cos(%1) - sin(G(1)) sin(B,(1)) (—nm) sin(%1) e/
+cos(6(1)) el sin(ry(1)) [-a- f‘z(t)] + cos(L,()) sin(%1) cos(ry(1)) (g'fz(f)) h

~ cos(£(1)) cos(%1) (——rlm] - sin(,(1)) sin(B(1)) cos(ry(1)) el (a (t)) cos(%1)
+sin(B, (1)) cos(r,(¢)) R (—C% rz(t)) sin(%1) + sin(r,(1)) cos(B,(1)) R (562 r2(t))

— cos(r,(1)) cos(E, (1)) sin(%1) (56; ul(t)j +cos(ry(1)) sin(§,(2)) cos(B(#)) cos(%1) p QR

+ cos(r,(1)) cos(§, (1)) sin(%l) L Q R

— sin(r,(1)) sin(r,(1)) sin(§ (1)) cos(B(1)) sin(%1) p Q R
+sin(r,(1)) sin(r,(7)) cos(§(2)) cos(%1) p QR

— sin(r,(£)) sin(G,(1)) sin(B,(1)) cos(ry(£)) L Q R

— cos(ry(1)) sin(E, (1)) cos(B(1)) COS(%l)[ u (f))
+sin(r,(#)) sin(r,(¢)) sin(§,(2)) cos(B(1)) sin(%1 )( lll(l)j
= sin(r,(1)) sin(ry(7)) cos(5(7)) COS(%l)( u (f)]
+sin(r,(1)) sin(G(#)) sin(B,(#)) cos(r (1)) ( ul(t)j

— cos(ry(#)) sin(§,(¢)) cos(By(2)) sin(%1) ( uz(l‘)J

0
+ cos(7,(t)) cos(§,(¢)) cos(%1) (;3; ul(t)j +sin(&,(1)) sin(B(1)) sin(r,(¢)) (5; uz(t)j

+sin(7,(¢)) sin( (1)) cos(B,(#)) cos(%1) QAR+ sin(r,(£)) cos(§(¢)) sin(%1) QA R
+ cos(r,(¢)) sin(r(2)) sin(§,(2)) cos(B,(2)) sin(%1) QAR

— cos(r,(1)) sin(#(#)) cos(G(¢)) cos(%1) QAR

+ cos(7,()) sin( (1)) sin(B,(¢)) cos(r)(#)) QA R

%3 =R cos(E (1)) (-:; B,c(t)] +cos(r,(£)) sin(B,(#)) sin(%1) sin(r,(7)) Q AR
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+ sin(B,()) cos(%1) sin(r,(1)) QAR - sm(Bk<t>>sm<%1)oos(rlu))( umj

~ cos(B,(1)) sin(r,(1)) (— uz<f>) +sin(ry(1)) sin(B(1)) sin(%1) sin(ry(1)) [ u (t))
~ sin(B,(1)) cos(%1) cos(r(1)) (‘a? zq(t)) sin(r;(£)) cos(B(1)) cos(r,(1)) ( wm)
— cos(r,(#)) cos(B,(1)) cos(r,(1)) @ A R+ cos( B(1)) cos(r,(1)) e (—a- w)j cos(%1)
+ cos(B(1)) ( rlm) sin(%1) el +cos(B,(1)) R (- rl(t)J cos(%1) sin(G(1))
+sin(By(1)) sin(%1) [ (r)) -+ sin(B,(1)) cos(%1) cos(r,(#)) ( m}
+sm(m<r>)sm<r1<t>)Rs1n<ck(r>>( r2<t>J+cos(%l)Rcos(r,u»( r2<z>jcos<ck<t>>
+sin(%l)R(—a—n(r))cos(ck(t))+sin<Bk<t)>Rsin(f:k<r>>Q

+ sin(B(1)) cos(%1) cos(r,( 1)) p Q R - cos(Bk(mcos(r,(r))Rsm(c:,xt»( rz(t))sm(%l)

— sin(r,(#)) sin( B (1)) sin(%1) sin(r, (1)) p QR+ sin(r,(#)) cos(By(?)) cos(r (1)) L QR

L

[

[ Derivation of equations of motion by Lagrangian method
L

[ This section defines vectors of displacement degrees of freedom, their rates and accelerations.
[ > DOFF:=[ul[l](t),ul2](t),c[1]1(t), r[2](E)]:

[ > N:=3; Choose number of rotor blades

L N:=3

[ > DOFB:=[]:ThetaB:=[]:

"> for i from 1 to N do

> DOFB:=[op (DOFB) ,betali] (L) ,zetal[i] (t)]:

L > od:

[ > DOF:=[op (DOFF) ,op (DOFB) | ;

L DOF = [u(t), uy(1), 1 (1), ry(1), B,(1), &,(8), B,(1), Ga(1), B,y(1), G3(1)]
[ > dDOF:=diff1l (DOF) ;

dDOF =

EQ o 9 o, 9, 0. 0, 05,0 }
— (0,5 (1), (D), 202 STYOR: 2L SR, 200, B S50

[ > ddDOF:=diffl (dDOF)
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[>
[>
[>

V VVVVVVVYVVYVYV

>

ddDCWY=[

2
_" {
o 1()

2

2 2

i 0 8 & i i & il
PR PPLE O L (1), B(f)—C(f)*‘Bz(f) _Cz(t)_ﬁs(’)_CJ(f)

[ This section deﬁnes transformatlons between time dependent and mdependent notation in terms of
| substitution sets.

setA:={}:setB:={}:setC:={}:
setD:={}:setE:={}:setF:={}:
DOFq:=[] :dDOFqg:=[] :ddDOFq:=[]:
for i from 1 to vectdim(DOF) do
DOFq:=[op(DOFq) ,ql[i]]:
dDOFq:=[op (dDOFq) ,dqfil]:
ddDOFq:=[op (ddDOFq) ,ddqg[i]]:

setA:

setB:

setC:

setD

setk

setF':
od:

=gsetA union
=setB union
=gsetC union

:=getD union
:=setk union

=setF union

{ddDOF[i]1=ddDOFq[i]}:
{dDOF[1i]=dDOFq[i]}:
{DOF[i]=DOFglil}:
{ddDOFq[i]=ddDOF[i]}:
{dDOFq[i]=dDOF[i]}:
{DOFqg[i]=DOF[i]}:

setl:=setA union setB union setC:Substitution set to go from dependent to

independent
set?:=setD union setE union setF:Substitution set to go from independent to

dependent

[ This section combines all of contributions to the terms of the Lagrange equation.

[>
[>
[>

T:=TF:
U:=U0F:
D1 :=DF

[ > GF:=[0,0,0,0]:

>
>
>
>
>

YVVVVY

> for i from 1 to N do

T:=T+subs (k=1i, TBk) :

U:=U+subs (k=1 ,UBk) :

D1:=Dl+subs (k=i ,DBk) :
GF:=[op(GF),subs(k=i,Mbetaﬂk),subs(k=i,Mzeta_k)]:

od:

templ:
temp?2 :
temp3:

Ll:
L2

[ This section carries out the differentiation operation of the Lagrange equation one term at a time
[> Temp:=subs (setl,T):
> for i from 1 to vectdim(DOF) do
=diff (Temp,dDOFg[i]):
=subs (set2, templ) :
=diff (temp2,t):

=subs (setl, temp3) :

:=diff (Temp,DOFqglil]) :
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> L3:=diff (subs (setl,U) ,DOFgli]):
> L4 :=diff (subs (setl,D1l) ,dDOFq[il) :
> GFq:=subs (setl ,GF[i]):

> EOM[i]:=L1-L2+1L3+L4-GFq:

> od:

[ This section formats the equations of motion into the form A d2x/dt2 = f
[ > A:=matrix(vectdim (DOF) ,vectdim(DOF)) ;

i A:=array(1..10,1..10,[ 1)

> for i from 1 to vectdim(DOF) do

for j from 1 to vectdim(DOF) do
A[i,j]:=coeff (EOM[i],ddDOFq([]]) :
od:
od:
setZ:={}:

for i from 1 to vectdim(ddDOFq) do
setZ:=setZ union {ddDOFq[i]=0}:

od:

f:=array(l..vectdim(DOF)) ;

fi=array(1..10,[ 1)
for i from 1 to vectdim(DOF) do
fli]:=-eval (subs (setZ ,EOM[i])):

1T
YVVVVVVVVYVY

v VvV

> od:
" This section makes a change of notation so equations are compatible with standard MATLAB notation
| for state variables and inputs
[ > x1l:=[]:xldot:=[]:
[ > for i from 1 to vectdim (DOF) do xldot:=[op (xldot) ,x[i]] od:
> for i from vectdim(DOF)+1 to 2%yectdim (DOF) do x1l:=[op(x1) ,x[i]]
od:
setX:={}:
for i from 1 to vectdim(DOF) do
setX:=setX union {dDOFq[i]=xldot[i]}:
setX:=setX union {DOFg[i]=x1[il}:
od:
setX;

g = Xy, Ay = Xg, G5 = X165 dq, = X7, 47 = X7, Ay = Xo, 9 = X195 dqyo = X190, 910 = Xa05 dqs = Xs,

10 1T
YVVVVY

-

L s = X5, dqs = Xg, @y = X1, A3 = %3, @3 = X135 dq, =X, G4 = X4 A4y = X1, 41 = X115 dq, =%, }

[ > setX1:={abs(1,x[1])=0,abs(l,x[2])=0,abs(l,x{3])=O,abs(l,x[4])=0};
L setXl = {abs(l,x3)==O,abs(l,x4):=0,abs(l,xl)::O,abs(l,x2)=:0}

[ > Al:=subs (setX,op(a)):

[ > fl:=subs(setX,op(f)):

[ > £2:=subs (setX1l,o0p(f1)):

[ > B:=augment (Al,£2):
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proc(x) ... end

[ > readlib(fortran) ;
[ > #fortran(B,optimized); This statement converts equations to computer code
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APPENDIX B

Equations of Motion Generated for a Three Bladed Simplified Rotor
Model with MAPLE

[ -
[ The following is an excerpt from the MAPLE worksheet which was programmed to carry out the
Lagrangian derivation of the equations of motion for a 3 bladed coupled rotor fuselage system.

L
[>
[ FUSELAGE X-DIRECTION:
> EOM1[1]1=0;

—mb, cos(%5) Qlel- mb, cos( %4 ) O’el - mb, cos(%2) O’ el +M, %7

0
—mb, R cos(%5) cos(£,(1)) %6 + mb, %7 + mb, %7 +mb; %7 + ¢, (5; uy( t)j

+2 mb, R sin(%5) Q sin(E,(7)) %06 — mb, R cos(%5) sin(&,(7)) (g—t; Cl(t)J
+mb, R sin(%5) O° sin(&,(¢)) — 2 mb; R cos(%5) Q cos(&,(1)) %6

2
+mb; R sin(%5) sin(£;(¢)) %6° + K u,(t) —mby R sin(%5) cos(&,(1)) ((—j'{; Cl(t)}

— mb, R cos(%5) QF cos(§,(£)) — mb, R cos(%4) Q cos(Ly(1))

+2 mb, R sin(%4) Q sin(§,(1)) %3 —mb, R cos(%4) cos(E,(2)) %3?
2

— mb, R cos(%4) sin(5,y(7)) (6%; Cz(t)) +mb, R sin(%4) (0% sin(G,(2))

~ 2 mb, R cos(%4) Q cos(Ey(1)) %3 + mb, R sin(%4) sin(£,(2)) %3?
2
— mb, R sin(%4) cos(&,(1)) (gﬁ £, z)j — mb, R cos(%2) Q* cos(&5(1))

+2 mb, R sin(%2) Q sin(&;(1)) %1 — mby R cos(%2) cos(&5(1)) %12
2

— mb, R cos(%2) sin(&y(£)) (gt; Q(z‘)j +mb, R sin(%2) Q7 sin(¢;(£))

— 2 mb, R cos(%2) Q cos(Ey(¢)) %l + mb, R sin(%2) sin(5;(¢)) %17
&

Y CJ(t)] =0
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— mby R sin(%2) cos(&,(1)) (




%,
%1 :=5;8;3(t')
%2 :=Q 1+,

%3 =2 (1)
R

%4 :=Q1t+ D,

%5 :=—'Qt+CI)1

%66 _—C1(t)
2

[ FUSELAGE Y-DIRECTION:
[ > EOM1[2]=0;

—mb, sin(%6) OF el — mb, sin(%4) QO el —mb, sin(%2) O el +¢, @- uz(t)j + K, u,(1)
+ M, %7 + mb, %7 + mb, %7 + mb, %7 — mb Rmn(%Z)sm(Cz(t))[ Cz(t)J
— mb, R cos(%2) @ sin(&,(1)) — 2 mb, R sin(%2) Q cos(£,(1)) %1
— mb, R cos(%2) sin(C,(1)) %1% +mb Rcos(%é)cos(CB(f))( 1;3(0)
— mb, R sin(%6) Q* cos(&y(1)) — 2 mb, R cos(%6) Q sin(Gy(#)) %5
—~ mby R sin(%6) cos(Gy(1)) %5 — mb, Rsm(%6)sm(C3(t))(62 cg(z)J

— mb; R cos(%6) o° sin(&,(1)) — 2 mb, R sin(%6) Q cos(&y(1)) %3
— mb, R cos(%6) sin(Gy(1)) %57 — mb, R sin(%4) QF cos(§,(1))
~2mb, R cos(%4) Q sin(§,(¢)) %3 —mb, R sin(%4) cos(&,(¢)) %3?

2
- mb, R sin(%4) sin((, (t))[a C(f)) mb, R cos(%4) o sin(§,(¢))

— 2 mb, R sin(%4) Q cos(&,(1)) %3 —mb, R cos(%4) sin(§,(7)) %3?
2

+mb, R cos(%4) cos(§,(¢)) ( Cl(t)j — mb, R sin(%2) 0 cos(&,(1))

— 2 mb, R cos(%2) Q sin(§(¢)) %l +mb, R cos(%2) cos(&,(1)) { C2(f)J
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— mb, R sin(%2) cos(§,(1)) %1% =0

%1 =2 L(1)
S
%2:=Qt+ D,

%3 =24, (1)
0o . a[ 1

%4 =Qt+

0
%5 =—C,(¢
=500

%6 :=Q 1+,
a’l

%7 =—"u,(t

0 atz 2()

[ ROTOR BLADE 1 LEAD LAG:

> EOM1[3]=0;
2

0 0
Ke, §,(t) + Czeta, [5 C!(t)} —mb, ('a—t'z‘ ul(z‘)) R cos(%1) sin(&,(?))

& o &
- mb, &;ul(t) R sin(%1) cos(&,(2)) +mb R 'é't;Cl(t)
2

—-mb, (S}; "‘z(f)j R sin(%1) sin(&, (7)) + mb, (5;2- uz(t))R cos(%1) cos(&,(1))

+mb, O el Rsin(§,(1))=0
%l :=Q+®,

[ ROTOR BLADE 2 LEAD LAG:

> EOM1[4]=0;
2

Ke, C,(t) +mb, Q%elR sin(G,(1)) +mb, R? (g:—z Cz(z‘)) ~ mb, [-:t—z ztz(t)J R sin(%1) sin(&,(#))

2

2
+mb, [6%; uz(t)] R cos(%1) cos(&,()) — mb, (-5—15 ul(r)} R cos(%1) sin(&,(¢))

2
— mb, ['s;; ul(t)J R sin(%1) cos(§,(2)) + Czeta, (%Cz(z‘)) =0

| %1=Q+®,
- [ ROTOR BLADE 3 LEAD LAG:
f>-EOM1[5]=O;
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0 5 &
Ke, C(1) + Czeta, (—6_/ CB(I)] + mb, R? [52“ Q(z‘)j —mby (5;2' uz(t)j R sin(%1) sin(&,(1))

2

+ mb; [5,—2 uz(t)j R cos(%1) cos(&;(¢)) — mb, (5/—2 ul(z‘)] R cos(%1) sin(&5(7))

2
— mb, [—5;; ul(z‘)) R sin(%1) cos(&;(1)) + mb, Q% el Rsin(G,(£))=0

%l =Q 1+,
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APPENDIX C
OPTIMIZED CODE GENERATED BY MAPLE FOR THE SIMPLE THREE

A BLADED COUPLED ROTOR- FUSELAGE MODEL
[
" MAPLE converts the elements of B, which is an augmented matrix B= [A f], from their symbolic
_ representation into FORTRAN code (or C code if desired).
( > fortran(B,optimized) ;

t2 = mb{1l}*R

t3 = Omega*t

t4 = £3+Phi(l)

t5 = cos(td)

t6 = sin{x{8))

t7 = t5*%t6

t9 = sin{(t4)

t10 = cos{x{8))

£ll = t9*t10

tl3 = —-t2*t7-t2*tll

tld = mb(2)*R

t15 = t3+Phi(2)

tl6 = cos(tl5)

tl7 = sin(x(9))

t18 = tl6*tl7

t20 = sin(tl5)

t21 = cos({x{9})

t22 = t20*t21

£t24 = ~-t14*t18-tl4*t22

£25 = mb{3)*R

t26 = t3+Phi (3)

t27 = cos{t26)

t28 = sin(x{10))

£29 = £27*t28

£31 = sin(t26)

t32 = cos(x(10))

£33 = £31*t32

£35 = -t25%£29-t25*%t33

t42 = Omega**2

t43 = t42*el

£t45 = t5*t42

t48 = t2*t9

t50 = Omega*t6*x(3)

t52 = t5*%t10

£53 = x(3)**2

t56 = t9*t42

£58 = t2*t5

t61l = Omega*tl0*x(3)

£t63 = £9*t6

t68 = tl6*t42

t71 = —V(l)*x(l)*abs(x(l))-K(l)*x(6)—c(1)*x(l)+mb(l)*t5*t43+t2*t45

#*th—Z*t48*t50+t2*t52*t53-t2*t56*t6+2*t59*t61—t2*t63*t53+mb(2)*t16

B e43+t14%£68*21

£t72 = t£14*t20

t74 = Omega*tl7+*x(4)

t76 = tl6*t21 Page 1




t77 = x(4)**2
£80 = t20*t42
t83 = t14*t16
t85 = Omega*t21*x(4)
t87 = t20*t1l7
t92 = t27*t42
£95 = t25*t31
t97 = Omega*t28+*x(5)
t99 = t27*t32
t100 = x(5)**2
t103 = t31*t42
t106 = t25*t27
£108 = Omega*t32*x(5)

t110 = t31%t28
t1l13 = QR ETO*ETA+ELA*ET6*ETT~t14*EB0*ELT+2*t83*£B85~£14*£B7*tT7 T+mb

#(3)*t27*t43+t25*t92*t32-2*t95*t97+t25*t99*thO—t25*t103*t28+2*t106
#*t108-t25*£110*t100

£118 = -t2*t63+t2*%t52
121 = -t14*t87+tl4*t76
t124 = t25*t99-t25%t110

t145 ~c(2)*x(2)—v(2)*x(2)*abs(x(2))-K(2)*x(7)+t25*t92*t28+2*t95*
#t108+mb(1)*t9*t43+t2*t56*t10+2*t59*t50+t2*tll*t53+t2*t45*t6+2*t48*

#t61+t2*£7*t53
tle7 = mb(2)*t20*t43+t25*t29*t100+t14*t80*t21+2*t83*t74+t14*t22*t7

#7+t14*t68*t17+2*t72*t85+tl4*t18*t77+mb(3)*t31*t43+t25*t103*t32+2*t
#106*£97+t25*t33*£100

t169 = R**2

£176 = Ks{1l)*signum(x(8)-2)

£180 = Ks (1) *signum(x(8)+2)

t185 = el*R

£189 = x(8)**2

t194 = u(l)—z*Vzeta(l)*x(3)*abs(x(3))—t176*x(8)/2+t180*z/2+t180*x(

#8)/2+t176*z/2—mb(1)*t42*t185*t6-Ke(l)*x(8)—Kd(1)*t189*x(8)—Ks(l)*x
#(8)~Czeta(l)*x(3)

+198 = Ks(2)*signum(x(9)-z)

£203 = Ks{2)*signum(x(9)+z)

t213 = x(9)**2

t218 = t198*z/2—t198*x(9)/2+t203*z/2+t203*x(9)/2—2*Vzeta(2)*x(4)*a

#bs(x(4))+u(2)—mb(2)*t42*t185*t17-Ke(2)*x(9)-Kd(2)*t213*x(9)—Ks(2)*
#x(9)-Czeta(2) *x(4)

£220 = x(10)**2

£226 = Ks(3)*signum(x(10)-2z)

£231 = Ks(3)*signum(x(10)+z)

t242 = -Kd(3)*t220*x(lO)~Ke(3)*x(10)+u(3)~t226*x(10)/2+t226*z/2+t2

#31*x(10)/2+t231*z/2-2*Vzeta(3)*x(S)*abs(x(S))-mb(3)*t42*t185*t28-c
#zeta (3)*x(5)-Ks(3)*x(10)
B(1,1) = mb(l)+mb(2)+mb(3)+M(1)

B(1,2) =0

B(1,3) = tl13

B(1l,4) = t24

B(1,5) = t35

B(1l,6) = t71+tll3

B(2,1) =0

B(2,2) = M(2)+mb(1)+mb(2)+mb(3)
B(2,3) = tll8

B(2,4) = tl2l

B(2,5) = tl24
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W noun

o

| S V| S S 1A |

£145+t167
£13

£118

mb (1) *£169
0

0

£194

£24

t121

0

b (2) *£169
0

t218

t35

t124

0

0

mb (3) *t169
t242
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APPENDIX D
S-FUNCTION M-FILE REPRESENTING THE DYNAMICS OF THE SIMPLE

ROTOR-FUSELAGE THREE BLADED MODEL

function [sys, x0] = helo3bA(t:x,u,flag,I1,12,13,14,15,16)

% function [sys, x0] = helo3bA(t,x,u,flag,I1,12,13,14,I5,16)
% .
% S-function arguments:

%

% t = time

% x = state vector

% u = input vector

% flag = switch used by numerical integration (simulation)
% routine to access certain parts of the s-function

:2 S-function input parameters:
://:
:/. I = [mb(1),mb(2),mb(3),M(1),M(2)]
:;: R = tR,Omega,el,ZI

://: 13 = [Phi(1),Phi(2),Phi(3)]

;: 4 = [c(1),c(2),¥(1):¥(2),

% Czeta(1),Czeta(2),Czeta(3),
% Vzeta(1),Vzeta(2), Vzeta(3)]
%

% 15 = [Ke(l)Ke(2)Ke(3),

% Kd(1),Kd(2),Kd(3),

% Ks(1),Ks(2),Ks(3),

:;- K(1),K(2)]

% 16 = [xrXixrYixrlixr2ixr3i,
% xXi,xYi,x1i,x2i,x3i]

%

% S-function to represent dynamics of 3 bladed coupled rotor-
% fuselage model which considers only inplane degrees of

% freedom, i.e., x and y translational fuselage degrees of freedom
% and lead-lag rotor blade degrees of freedom.
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%

% Explanation of variables:
%
%
% mb -> massofblade

%M > effective mass of fuselage

% R > distance from lead-lag hinge to blade center of mass

% el <> blade hinge offset

% Omega -> rotor speed

%z -> angle at which blade hits stops

% Phi -> blade phase angle w.r.t. azimuth postion

%c¢ > fuselagelinear damping

%v -> fuselage hydraulic damping

% Czeta > blade linear damping

% Vzeta > blade hydraulic damping

%K > effective stiffness of fuselage (landing gear stiffness)

% Ke > blade elastic spring constant

% Kd -> blade duffing spring constant

% Ks -> blade stop effective spring constant

% xr__i-> initial rate ‘

% x__i = initial displacement

%

% %% %% %% %% %% %% %% %% %% %% %% % % %% % %% %% %% %%
% Define input parameters

%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%

mb(1)=11(1); mb(2)=I1(2); mb(3)=11(3); M(1)=11(4); M(2)~11(5);
R=12(1); Omega=12(2);e1=12(3);z=12(4);

Phi(1)=I3(1); Phi(2)=13(2); Phi(3)=13(3);
o(1)F14(1);c(2)F14(2); v(1)=14(3); v(2)=14(4);
Czeta(1)=14(5); Czeta(2)=14(6); Czeta(3)=14(7);
Vzeta(1)=14(8); Vzeta(2)=14(9); Vzeta(3)=14(10);
Ke(1)=I5(1); Ke(2)=15(2); Ke(3)=15(3);

Kd(1)=I5(4); Kd(2)=I5(5); Kd(6)=I5(6);

Ks(1)=I5(7); Ks(2)=I5(8); Ks(3)=I5(9);
K(1)FIS(10);K(2)-15(11);

xrXiFI6(1); xrYi=I6(2);xr116(3); xr2iF16(4); xr3i=16(5);
xX16(6);xYi=16(7); x1=16(8); x2i=16(9);x3i=16(10);

% %% %% %% %% %% %% % %% %% %%%%%%%% %% %% %% %% %%
% S-function flag conditionals

%% %% %% %% %% %% %% %% %% %% % %% %% %% %% %% % %% %%
if flag=—0

sys=[10,0,10,3,0,0];




x0=[xrXi,xrYi,xr1i,xr2i,xr3i,xXixYi,x1i,x2i,x3i};

elseif abs(flag) =1

% Formulated equations of motion optimized for minimum number of floating

% point operations.

t2 = mb(1)*R;

t3 = Omega*t;

t4 = t3+Phi(1);

t5 = sin(t4);

6 = cos(x(8));

t7 = t5*t6;

t9 = cos(t4);

t10 = sin(x(8));

tll1 =t9*t10;

t13 = -22*t7-12*t11;
t14 = mb(2)*R;

t15 = t3+Phi(2);

t16 = cos(t15);

t17 = sin(x(9));

t18 = t16*t17;

120 = sin(t15);

21 = cos(x(9));

122 = 120*t21;

124 = -t14*t18-t14*22;
25 = mb(3)*R;

126 = t3+Phi(3);

t27 = cos(t26);

€28 = sin(x(10);

129 = t27*128;

t31 = sin(t26);

132 = cos(x(10));

133 = t31*t32;

35 = -t25*t29-t25*t33;
t40 = t2*19;

t42 = Omega*t6*3(3);
t44 = t5*t10;

45 =x(3)"2;

t48 = Omega”2;

t49 = t16*t48;

52 = t14*120;

t54 = Omega*t17*x(4);
t56 = t16*t21;

t87 = x(4)"2;




160 = t20*t48;

t63 = t14*t16;

t65 = Omega*t21*x(4);

t67 = t20*t17;

t71 = td8%el;

173 = t27*t48;

t76 = -v(1)*x(1)*abs(x(1))-c(1)*x(1)+2*t40*t42-t2*t44*t45+t14*t49*...
121-22¢52*t54+t14*t56*t57-t14*t60*t17+2*t63*t65-t14*t67*t57+mb(3)*...
t27*t71+t25*t73*t32;

t77 = t25*t31;

t79 = Omega*t28*x(5);

t81 = t27*t32;

t82 = x(5)"2;

t85 = t31*t48;

t88 = t25*127;

t90 = Omega*t32*x(5);

192 = t31*128;

197 = t9*t48;

t100 = t2*t5;

t102 = Omega*t10*x(3);

t104 = t9*t6;

t107 = t5*t48;

t113 = 2*t77*t79+125*t81*t82-t25*t85*t28+2*t88*t90-t25*192*t82+mb(1)...
*{9*¢71+t2*t97*16-2*t100*t102+t2*t104*t45-t2*t107*t10+-mb(2)*t16...
*t71-K(1)*x(6);

t118 = -t2*t44+t2*t104;

t121 = -t14*t67+t14*156;

t124 = -t25*192+125*t81;

t146 = -v(2)*x(2)*abs(x(2))-K(2)*x(7)-c(2)*x(2)+mb(2)*120*t71+t14*...
t607t21+2*t63*t54+t14*t22*t57+mb(3)*t31*t71+t14*t49*t17+2*t52*165+...
t14*t18*t57+t25*t85*132;

t167 = 2*t88*79+125*t33*t82+t25*173*128+2*t77*t90+125*t29*t82+mby(1)...
*t52t71+t2*t107*t6+2*t40*t102+t2*t7*t45+t2*t97*t10+2*t100*¢42+12...
*t11*t45;

t169 = R*2;

t171 = x(8)"2;

t177 = Ks(1)*sign(x(8)-z);

t185 = Ks(1)*sign(x(8)+z);

t189 = e1*R;

t196 = -Kd(1)*¢t171*x(8)-Ke(1)*x(8)+t177*2/2-t177*x(8)/2-2* Vzeta(1)...
*x(3)*abs(x(3))+t185*2/2+t185*x(8)/2-mb(1)*t48*t189*t10+u(1)...
-Ks(1)*x(8)-Czeta(1)*x(3);

203 = Ks(2)*sign(x(9)-z);

1208 = Ks(2)"sign(x(9)+z);

1217 = x(9)"2;




1222 = -2*Vzeta(2)*x(4)*abs(x(4))+1203*2/2-t203*x(9)/2+t208*2/2+1208...
*x(9)/2-mb(2)*t48*t189*t17-Ks(2)*x(9)-Czeta(2)*x(4)-Ke(2)*x(9)-Kd (2)...
*217*x(9)+u(2); v .

224 = x(10)*2;

1237 = Ks(3)*sign(x(10)-2);

1242 = Ks(3)*sign(x(10)+2);

1248 = -Kd(3)*1224*x(10)-Ke(3)*x(10)-mb(3)*t48*189*28-Ks(3)*x(10)...
2*Vzeta(3)*x(5)*abs(x(5))-1237*x(10)/2+t237*2/2+1242*2/2-Czeta(3)-..
*x(5)+u(3)+1242*x(10)/2;

B(1,1) = mb(1)+mb(2)+mb@)+M(1);

B(1,2) = 0;

B(1,3) = t13;

B(1,4) = t24;

B(1,5) = 135;

B(1,6) = t76+1113;

B(2,1) = 0;

B(2,2) = M(2)+mb(1)+mb(2)+mb(3);

B(2,3) =t118;

B(2,4) = t121;

B(2,5) = t124;

B(2,6) = t146+t167;

B(3,1) =t13;

B(3,2) = t118;

B(3,3) = mb(1)*t169;

B(3.4) =0;

B(3,5) =0;

B(3,6) = t196;

B(4,1) = 24;

B(4,2) = t121;

B(4,3)=0;

B(4,4) = mb(2)*t169;

B(4,5) =0;

B(4,6) = 1222;

B(5,1) = 6353

B(5,2) = t124;

B(5,3) =0;

B(54)=0;

B(5,5) = mb(3)*t169;

B(5,6) = t248;

% Calculate derivatives

[m,n]=size(B);
A1=B(:,1:n-1);
f1=B(:,n);




sys=zeros(1,2*m);
sys(1:5=A1V1;
sys(6:10)=x(1:5);
% Output states
elseif abs(flag) =—3
Sys=x;
else
sys=[I;

end




APPENDIX E
MOVING BLOCK ANALYSIS CODE

The following group of MATLAB?® programs can be used to perform a moving
block modal damping analysis on a signals that are either unimodal or bimodal. The
organization of the code is as follows:

mbloc is the primary code and calls maxf2m and frecur; maxf2m calls getmax and fft
( from the MATLAB® Signal Processing Toolbox function library) and dft . dampA isa
separate code that is used to curve fit the resulting moving block plot.

MBLOC:

function [logF1,t1,logF2,t2,0mega,N,Nb}-mbloc(Xsr)

% function [logF,t}=mbloc(X,sr)

%

% MBLOC calculates the magnitude of the discrete
% Fourier transforms of block segments of a signal
% for moving block damping analysis. This code is
% specifically designed to handle a signal with 1 or
% 2 dominant modes.

%

% X ->vector which contains the signal

% sr ->sampling rate at which signal was obtained
% logF1,2-> vector containing the natural logs of the

% moving block function for each successive

% block '

% t1,2 -> vector containing the times initializing

% each block

% omega -> frequency at which the moving block function
% is evaluated

% N ->signal length after it is padded with zeros

% Nb ->block length.

% f - frequency spectrum of FFT (0 to Nyquist freq)
% Pxx -> power spectrum (magnitude of FFT)

% wl,2 ->vector of frequencies over zoomed frequency
% interval

%

% Copyright (c) 1997 by Chris S. Robinson

% All rights reserved '
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%% %% %% %% %% %% %% %% % %% %% % %% % % %% % %% % % % % %
% Call routine which determines frequency of interest

% and block size for evaluation of moving block function

%% %% %% % % %% %% % % % % %% %% % %% % % % % % % % % % % % % % %% Y Y

[omega,N,Nb,f,Pxx,w1,absF1,w2,absF2]=maxf2m(X,sr);

%% %% %% % %% %% %% %% %% % %% %% %% %% %% %% %% % % %%
% Pad signal with zeros if length is not a power of 2

% (this step is done because the fft routine contained

% in the function maxfum also pads the original signal

% with zeros if necessary). If signal length is a power

% of 2 initially then this step leaves the signal

% unaltered.

% %% %% %% %% %% % %% %%% %% %% %% %% %% %% %% % %% %%

EN-length(X);
z=zeros(1,1);
X=[Xz];

%% %% %% %% % %% %% %% %% %% %% % %% % % %% %% %% % % %%
% Evaluate the moving block function along signal using frecur and then fit '
% resulting curve with linear least squares fit

%% %% %% % %% %% %% %% %% %% %% %% % %% % %% % %% %% %%

flogF1,t1]=frecur(X,omega(1),Nb(1),sr);
[logF2,2]=frecur(X,omega(2),Nb(2),sr);
p1=polyfit(t1,logF1,1);
p2=polyfit(t2,logF2,1);
fitl=polyval(p1,t1);

fitz=polyval(p2,t2);

%% %% %% %% % %% %% %% % %% %% %% %% %% % %% %% %% % %%
% Plot the FFT results, the zoomed DFT results and moving block function versus
% time

%% %% %% %% %% %% %% %% %% %% %% %% %% % %% % %% %% %%

subplot(3,1,1)

plot(f,Pxx,'r');
xlabel('frequency (Hz)");
ylabel('radians”2/Hz');
title('Moving Block Plot');
subplot(3,1,2)
plot(w1,absF1,'r',w2,absF2,'g');
xlabel('frequency (Hz)');
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ylabel('radians”2/Hz');

subplot(3,1,3) :
plot(t1,JogF1,'r' t1,fitl,'r—',2,logF2,'g",t2.fit2,'g-');
xlabel("time (sec)');

ylabel(‘'log([F(w)])');

grid

dampl=-p1(1)/(2*pi*omega(1))
damp2*—p2(l)/(2"pi*omgga(2))

MAXF2M:
function [omega,N,NB,f,Pxx,w1,absF1,w2,absF2]=maxf2m(X.sr)

% function omega=maxf2m(X,sr)

% .

% MAXF2N computes the 2 dominant maximum of a

% bi-modal signal, X, in the frequency domain

% by using a fft for an initial estimate and then refining

% the solution by dividing the interval bounded by

% the nearest harmonics to the fft solution into subintervals.

% The Fourier coefficients are found at each of the

% frequencies defined by the subintervals, and a new

% maximum is found. The intervals nearest to the maximum
% are further subdivided and the maximum obtained is

% considered an adequate estimate.

%

% X -> Vector containing the values of the signal

% sr ->sampling rate at which the signal generated/recorded
% omega -> the frequency of the dominant mode present in the
% signal

% N ->length of signal padded with zeros

% Nb ->length of signal block that will be used for the

% moving block analysis

% Pxx -> Power spectrum of signal (magnitude of FFT)

%f ->frequency spectrum of FFT

% u,] ->two dominant frequencies estimated from FFT, refined
% estimate will be made about these two frequencies

% absF1,2 -> Power spectrum over the zoomed intervals about
% about the estimated frequencies

% omegal,2 ->The refined estimates of two dominant frequencies
% NB1,2 ->Block sizes, corresponding to the refined frequency
% estimates, to be used for the moving block

% calcualtions

% .

% Copyright (c) 1997 by Chris S. Robinson
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% All rights reserved

% %% %% %% %% %% %% % %% % % %% % %% % %% %% % % % % % %% %
% Determine signal length and the number of points to be added

% tc make that length a power of 2, then take the fast Fourier

% transform, instructing the fft routine to pad the signal with

% the proper number of zeros if necessary.

%% % %% %% %% %% % %% %% %% %% %% % %% %% %% % % % % % %%

n=length(X);
N=2"(ceil(log2(n)));
XF=f(X,N);

%% %% %% %% %% %% %% %% %% %% % %% %%%% %% %% % %% %%
% Take the results of the fft and determinethe power spectrum

% of the signal.

%% %% % %% %% %% %% %% %% % %% %% %% % %% %% %% % %% %%

m=length(XF);
Pxx=XF.*conj(XF)/m;
nyq=sr/2;
f=nyq*(0:N/2)/(N/2);
Pxx(N/2+2:N)=[];
Pxx(2:N/2)=2*Pxx(2:N/2);

%% %% %% %% %% % %% %% %% %% %% %% %% %% % %% %% %% %%
% Get a first estimate of the signal frequencies by finding the

% frequencies corresponding to the spikes in the power

% spectrum, then take the largest two.

% %% %% %%%%%%%%%%%% %% % %% %% %% %% %% %% %% %%

[maxV,indV]=getmax(Pxx);

[maxVs,i]=sort(maxV);

maxVs=fliplr(maxVs);

=fliplr(i);

u=f(indV(¥1)));

F(indV(i(2)));
dOmega=abs(u-I);

% %% %% %% %% %% % %% %% %% %% % %% % %% %% %% %% %% %%
% Zoom in on estimated frequency and take discrete Fourier

% transform for frequencies on an interval around the initial

% estimates in order to refine the fft resolution

%% % % % % % %% % % % % % % % % % % % % % % % % % % % % % % % % % % %
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nb=floor(length(X)/2);
k1=nb/sr*u;

k2=nb/sr*l;
h=ceil(length(X)*dOmega/nyq)
Nb=nb-10*h:nb+10*h;
wl1=Nb."(-1)*k1*sr;

w2=Nb. (-1)*k2*sr;
absF1=dft(X,sr,Nb,w1);
absF2=dft(X,sr,Nb,w2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Determine refined frequency estimate from results of discrete

o Fourier transforms of zoomed interval by finding frequency

% that corresponds to the maximum in the zoomed power spectrum

% plot.
%%%%%%%%%%'/o%%%%%%%%%%%%%%%%%%%%%%%%%

[maxF1,ind1]=getmax(absF1);
[maxF2,ind2]=getmax(absF2);
[dummy,ind1a]=max(maxF1);
ind1b=ind1(ind1a);
[dummy,ind2a]=max(maxF2);
ind2b=ind2(ind2a);

%%%%%%%%%%%'/o%%%%%%%%%%%%%%%%%%%%%%%%
% Return the frequency and block size for two modes
%%%%%%%%'/o%%%%%%%%%%%%%%%%%%%%%%%%%%%

NB1=Nb(ind1b);
omegal=w1(ind1b);
‘NB2=Nb(ind2b);
omega2=w2(ind2b);
NB=[NB1 NB2];
omega=[omegal omega2];

FRECUR:

function [logF,t}j=frecur(X,omega,Nb,sr)

% function [logF,t]=frecur(X,omega,Nb,sr)

% .

% FRECUR evaluates the moving block function for a signal
% given the frequency of interest and the block length

% using the recursion method.
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% (only good for boxcar windowing)

%

% Copyright (c) 1997 by Chris S. Robinson
% All rights reserved

% %% % %% % % %% % %% % % % % % %% %% % %% % %% % % %% % % % %%
% Evaluate the Fourier coefficients for the initial block.

% This step also initializes the recursion formula for

% evaluation of all subsequent blocks.

%% %% %% %% %% % %% %% % % % %% % %% %% %% % %% %% % % %%

N=length(X);
kb=omega*Nb/sr;
Xb=X(1:Nb);
c=cos(2*pi*kb/Nb*(0:Nb-1));
s=sin(2*pi*kb/Nb*(0:Nb-1));
a(1)=2/Nb*sum(Xb.*c);
b(1)=2/Nb*sum(Xb.*s);
t(1)=0;

% %% %% %% %% %% %% %% %% % %% %% % %% %% % %% %% %% %%
% Evalute the Fourier coefficients for the reamaining

% blocks by applying the recursion formula

% %% %% %% %% %% %% %%%% %% %% %% %% %% %% %% % %% %%

for T=2:N-Nb;
a(T)~(a(T-1)+2/Nb*(X(Nb+T-1)-X(T-1)))*cos(2*pi*kb/Nb)...
+b(T-1)*sin(2*pi*kb/Nb);
b(T)=~(a(T-1)+2/Nb*(X(Nb+T-1)-X(T-1)))*sin(2*pi*kb/Nb)...
+b(T-1)*cos(2*pi*kb/Nb);
t(T)~T-1)/sr;

end
%% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %% %%
% Evaluate the natural log of the moving block function for
% each block.
%% %% %% %% %% %% %%%% %% %% %% %% %% %% %% %% %% %%

logF=1/2*log(a.”2+b."2);

GETMAX:

function [maxV,indV]=getmax(X)
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%, function [maxV,indV]=getmax(X)

%

% GETMAX determines the relative maximum points
% in a vector of data (X).

n=length(X);
count=0;
for F1:n-2
a=X(i+1)-X(i);
b=X(i+1)-X(i+2);
if(sign(a) = sign(b) & 2> 0)
count=count+1;
maxV(count)=X(i+1);
indV(count)=i+1;
end
end

DFT:
function absF=dft(X,sr,Nb,w)

% function absF=dft(X,sr,Nb,w)

%

% DFT computes the discrete Fourier transform

% magnitude of a signal, X, sampled at a rate, sr

% at the frequency w (w is in Hz).

%

% X -> Vector containing signal

% sr -> sampling rate at which signal was created
% Nb -> Vector of number of points in sub-block of
% signal over which the discrete Fourier

% transform will be applied

% w <> Vector of frequencies over which the discrete
% Fourier transform will calculated (each has a
% corresponding block size from the Nb vector)
%

% Copyright (c) 1997 by Chris S. Robinson

% All rights reserved

%%%%%’/o%%%%%%%%%%%%%%%%%%%%%%%'/o%%%%%%

% Evaluate discrete Fourier Transform by calculating
% the Fourier coefficients at the frequency of interest.

% Return a vector containing the magnitudes of the dft

% at the frequencies contained in the vector w.
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% %% %% %% %% % %% %% %% % %% % %% % % %% % % % % % % %% % % %%

for i=1:length(w)

N=Nb(i);
k=N*w(i)/sr;
x=0:N-1;
t1=2*pi*k*x/N;
c=cos(t1);
s=sin(t1);
C=X(1:N).*c;
S=X(1:N).*s;
a=2/N*sum(C);
b=2/N*sum(S);
absF(i=a"2+b"2;

end

DAMPA:

function y=dampA (logF,t,tstart,tstop,omega)

:;- function y=dampA(logF,t,tstart,tstop,omega)
3

% function DAMPA performs least squares fit of moving
% block data and calcualtes the damping modal damping

% from the slope of the fit.

%

% logF -> vector of natural logs of the moving block
% function values.

%t ->time vector which corresponds to the times
% at the beginning of the each block in the

% moving block analysis.

% tstart -> Start time for section of moving block plot
% to be least squares fitted.

% tstop -> Stop time for section of moving block plot
% to be least squares fitted.

% omega -> frequency of used in moving block analysis.
%

% Copyright (c) 1997 by Chris S. Robinson

% All rights reserved

%
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% % % % Y% % % % % % % % % % % % % %o % %o % % % % % % % % %o % %o % % % % Yo
% Extract the pertinent section of the moving block plot

% according to the user defined start and stop times
% % Y% % Y % % Y% % % Y% % % % % % % % % % % % % % % %% Y% %o % % % % % % %o %

u=ones(1,Jength(t));
utl=tstart*u;

ut2=tstop*u;
[dummy,ind1}=min(abs(t-ut1));
[dummy,ind2}=min(abs(t-ut2));

%% % % %% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

% Perform a first order polynomial fit to moving block plot
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

p=polyfit(t(ind1:ind2),logF(ind1:ind2),1);
%% % % Y% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %
9% Use the resulting slope from the least squares fit to

% determine the modal damping and return this value
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

y=-p(1)/(2*pi*omega);
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APPENDIX F
INPUT FILE FOR COMPLEX ROTOR-FUSELAGE MODEL

% This m-file serves as input file for running the simulink

% S-function helo3B.m.

%

% Y% % Y% %% % % % % % % % % % % Y% % % % % % % % % % % % % % %% % % % % Y%
% Helo Physical and Aerodynamic parameters

% % % % % Y% %o % %o % Yo Yo %o % Y% %o % %o %o %o %o % %o % % %o % % % % % % % % % %o
% Distance from fuselage center of mass to hub (length).

h=.7907;

% Hinge offset (length).

el=.2791;

% Length of rotor blade (length).

R= 2.3809;

% Mass of rotor blades (mass).

mb(1)=0.01432; % LBS/g (SLUGS)
mb(2)~0.01432;
mb(3)=0.01432;

%, Effective mass of fuselage and moments of inertia (mass
% or mass*length”2).

M1=1.5486;
M2-=1.3060;
111=.13497;
122=.4669;
112=0;

% Blade azimuth phase angles (radians)
Phi(1)=0;

Phi(2)=2*pi/3;

Phi(3)=4*pi/3;

% Rotor speed (radians per/sec)
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Omega=75.39;

% Blade spring stiffnesses

%  Linear springs for lead-lag (moment/radian)
kl1(1)=143.85;
kl1(2)-143.85;
kl1(3)=143.85;

%  Linear springs for flap (moment/radian)

kf1(1)=31.38;
kf1(2)=31.38;
kf1(3)=31.38;

% Dauffing springs for lead-lag (moment/radian”3)

kI3(1)=0;
kI3(2)=0;
k13(3)-0;

% Duffing springs for flap (moment/radian”3)

kf3(1)=0;
kf3(2)=0;
kf3(3)-0;
% Blade damping constants
% Damping in lead-lag (moment/(rad/sec))

c(1)=3.55;
(2)=3.55;
cl(3)=3.55;

% Damping in flap (moment/(rad/sec))

cf(1)-0;
cR2)=0;
f(3)=0;

% Fuselage effective stiffness
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%  Translational (force/lengtll)

KT1=3000;
KT2=3000;

% Rotational (moment/radian)

KR1=280.35;
KR2-46.60;

% Fuselage damping constants
%  Translational linear (force/(length/sec))

CT1=0;
CT2=0;

% Translational nonlinear (force/(length/sec)"2)

VT1=0;
VT2=0;

% Rotational linear (moment/(rad/sec))

CR1-=1.061449;
CR2-=1.29852;

% Rotational nonlinear (moment/(rad/sec)"2)

VR1=0;
VR2=0;

% Aerodynamic parameters.

% lift curve slope (1/radian)
a=2*pi;

% Parasite drag coefficient
¢d0=0.0079;

% Air density (mass/length”3)

rho1=0.002377;
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%  Rotor chord (length)
c=0.137;

%  Advance ratio
mu=0;

% Inflow ratio

lambda=0; % set to zero for all cases until trim
% routine is setup

% Initial conditions

%  Fuselage translational rates (length/sec)

xrtXi=0;
xrtYi=0;

%  Fuselage rotational rates (radians/sec)

xurXiF.1;
xrrYiF0;

%  Blade lead-lag rates (radians/sec)
xr1li=0;
xr2li=0;
xr3li=0;
%  Blade flap rates (radians/sec)
xr1fi=0;
xr2fi~0;
xr3fi=0;
%  Fuselage translational displacements (length)

xtXi=0;
xtYi=0;

%  Fuselage rotational displacements (radians)
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xrXi=0;
xrYi=0;

% Blade lead-lag displacement (radians)
x1li=0;
x2li=0;
x31i=0;

% Blade flap displacement (radians)
x1fi=0;
x2fi=0;
x3fi=0;

% Form input matrices from above parameters

I1=fh,e1,R,mb(1),mb(2),mb(3),M1,M2,111,122,112,...
Omega,Phi(1),Phi(2),Phi(3)];

12=[ki1(1),k11(2),kI1(3),ki3(1),kI3(2),kI3(3);...
kf1(1),kf1(2),kf1(3),kf3(1),k13(2),kf3(3);...
cf(1),cf(2),cf(3),cl(1),cl(2),cl(3));
I3=[KT1,KT2,KR1,KR2;...
CT1,CT2,CR1,CRZ;...
VT1,VT2,VR1,VR2};
H4=[a,cd0,rhol,c,mu,lambda];
Y5~ [xrtXi,xrt Vi, xreXi,xrr Yi,xr1fi,xr2fi,xr3fi,xrili;xr2lixr3iil;

T6=fxtXi,xt Y3, xrXi,xrVi,x1fi,x2fi,x3fi,x1li,x2li,x31i];
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